

Инструкция по проектированию

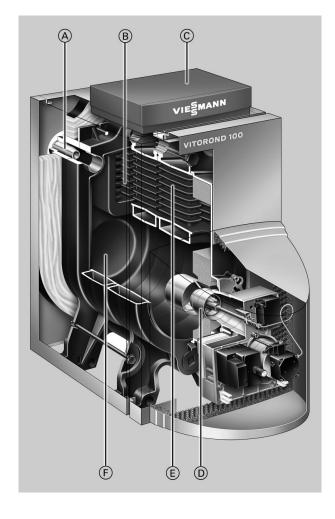
VITOROND 100 Tun VR2B

Низкотемпературные чугунные водогрейные котлы для работы на жидком и газообразном топливе 18 - 100 кВт

VITOLA 200 Tun VB2A

Особо низкотемпературный водогрейный котел для жидкого и газообразного топлива 18 - 63 кВт

Оглавление


Оглавление

1.	Vitorond 100, тип VR2B,	1.1	Описание изделия	4
	18 - 33 кВт	1.2	Условия эксплуатации	5
		1.3	Технические данные	6
_				
2.	Vitorond 100, тип VR2B,		Описание изделия	
	40 - 100 кВт		Условия эксплуатации	
		2.3	Технические данные	11
3.	Vitola 200, тип VB2A, 18 - 63 кВт	3 1	Описание изделия	13
٥.	VII.014 200, 19111 VBZA, 10 - 00 KB1		Условия эксплуатации	
			Технические данные	
			··	
4.	Емкостный водонагреватель	4.1	Технические характеристики Vitocell 100-V, тип CVA	18
			■ Состояние при поставке	
		4.2	Технические характеристики Vitocell 300-V, тип EVA	
		4.0	■ Состояние при поставке	
		4.3	Технические характеристики Vitocell 300-V, тип EVI	
		44	■ Состояние при поставке	
		7.7	■ Состояние при поставке	
		4.5	Технические данные Vitocell 300-H, тип ЕНА	
			■ Состояние при поставке	
		4.6	Подключения емкостного водонагревателя в контуре ГВС	41
5.	Принадлежности для монтажа	5.1	Технические данные	42
			■ Принадлежности для соединения емкостного водонагревателя с водогрейным	
			КОТЛОМ	
			■ Принадлежности для отопительных контуров	
			■ Принадлежности для водогрейных котлов	34
6.	Указания по проектированию	6.1	Водогрейный котел	55
	Pro Pro		■ Выбор номинальной тепловой нагрузки	
			■ Топливо	56
			■ Монтаж соответствующей горелки	56
			 ■ Исполнение с горелкой Vitoflame 200 – для режима эксплуатации с отбором 	
		0.0	воздуха для горения извне (кроме Vitorond 100)	
		6.2	Установка и монтаж	
			■ Условия монтажа ■ Минимальные расстояния для котла Vitorond 100	
			■ Минимальные расстояния для котла Vitola 200	
		6.3	Гидравлическая обвязка	
			■ Расчет параметров установки	
			■ Предохранительные устройства	
			■ Отопительные контуры	58
			■ Полимерные трубопроводы для радиаторов	
			 Устройство контроля заполненности котлового блока водой	
			■ Качество воды в установке	
		6.4	■ Расширительный бак	58 60
		0.4	■ Примеры установки	
		6.5	Подключения в контуре ГВС	
			Жидкотопливные горелки	
			■ Однотрубная система снабжения жидким топливом	63
		6.7	Газовая горелка	
			■ Снабжение газом	
		0.0	■ Топливо	
		ზ.თ	Система удаления продуктов сгорания ■ Система удаления продуктов сгорания	
			■ Система удаления продуктов сторания	
			■ Комбинированный регулятор тяги Vitoair	
			Назначение регулятора тяги	
7.	Контроллеры	7.1	Соответствие типа контроллера и водогрейного котла	
			■ Vitotronic 100, тип КС1	(1)
			■ Vitotronic 100, тип КС2В	71 8
			■ Vitotronic 100, тип КСЗ	72 4
			■ Vitotronic 100, тип КС4В	
			■ Vitotronic 200, тип КО1В	
			= VIGUOTIO 200, IFITI NO2D	, 5 15

Оглавление (продолжение)

9.	Предметный указатель	(
8.	Приложение	8.1 Предписания / инструкции
		■ Телекоммуникационный модуль LON
		. , ,
		■ Удлинение соединительного каоеля■ Оконечное сопротивление (2 шт.)
		лерами Удлинение соединительного кабеля 9
		■ Соединительный каоель LON для информационного оомена между контрол- лерами
		 ■ Vitocom 200, тип GP1 ■ Соединительный кабель LON для информационного обмена между контрол-
		■ Vitocom 100, тип GSM
		■ Модуль расширения EA1
		■ Модуль управления гелиоустановкой, тип SM1
		■ Накладной терморегулятор
		■ Погружной терморегулятор
		смесителя
		 Блок управления приводом смесителя для отдельно приобретаемого привода
		■ Комплект привода смесителя, с блоком управленияя
		■ Распределитель шины KM
		■ Внешний модуль расширения H5
		■ Приемник сигналов точного времени
		■ Датчик температуры уходящих газов
		■ Погружной датчик температуры
		■ Датчик температуры помещения
		■ Vitotrol 300A
		■ Vitotrol 200A
		■ Указание для Vitotrol 200A и 300A
		■ Vitotrol 100, тип UTDB-RF
		■ Внешний модуль расширения Н4
		■ Vitotrol 100, тип UTDB
		■ Vitotrol 100, тип UTA
		■ Распределение принадлежностей по типам контроллеров
		7.8 Принадлежности контроллера
		■ Состояние при поставке
		■ Технические данные
		7.7 Vitotronic 200, тип KO2B, № заказа 7441 802
		■ Состояние при поставке
		■ Технические данные
		7.6 Vitotronic 200, тип KO1B, № заказа 7441 800
		Состояние при поставке
		■ Технические данные
		7.5 Vitotronic 100, тип КС4В, № заказа 7441 801
		Состояние при поставке
		■ Технические данные
		7.4 Vitotronic 100, тип КС2В, № заказа 7441 799
		Технические данные
		температуры
		 ■ Датчик температуры емкостного водонагревателя ■ Датчик наружной температуры
		■ Датчик температуры котла
		7.2 компоненты в состоянии при поставке

1.1 Описание изделия

- Струйная система циркуляции Jetflow для гидравлического распределения обратного потока (по температуре)
- Поверхность нагрева Eutectoplex из специального гомогенного серого чугуна
- © Контроллер цифрового программного управления котловым контуром Vitotronic
- D Жидкотопливная горелка Vitoflame 200 Unit
- Е Третий ход дымовых газов
- (F) Камера сгорания

Котел Vitorond 100 - это современный чугунный трехходовой котел с привлекательной ценой.

Состоящая из литых сегментов поверхность нагрева Eutectoplex обеспечивает высокую эксплуатационную надежность. Образование трещин вследствие внутренних напряжений практически исключено благодаря равномерному тепловому потоку. Широкие теплообменные поверхности предотвращают образование накипи; шумы при кипении также отсутствуют. Струйная система циркуляции JetFlow целенаправлено подает холодный возвращающийся теплоноситель через все пространство водогрейного котла. Благодаря этому в задней зоне водогрейного котла не образуются холодные зоны и конденсат; таким образом температура котловой воды даже в критических участках остается выше точки росы.

Эластичное уплотнение обеспечивает постоянную герметизацию на стороне дымовых газов. Кроме того, горизонтальное расположение газоходов позволяет выполнять чистку котла просто и эффективно.

Основные преимущества

- Нормативный КПД: 89 % (H_s)/94,5 % (H_i).
- Поверхности нагрева Eutectoplex обеспечивают высокую эксплуатационную надежность и длительный срок службы.
- Компактный и поставляется в собранном виде.
- Литые сегменты с эластичным уплотнением для обеспечения долговечной герметизации дымовых газов.
- Струйная система циркуляции Jetflow обеспечивает оптимальное распределение котловой воды.
- Простой в использовании контроллер Vitotronic с индикацией текста и графики.

- Допускаются все сорта жидкого топлива EL. Также для жидкого топлива DIN 51603-6-EL A Bio 10: жидкое топливо EL с низким содержанием серы и добавлением до 10 % биокомпонентов (FAME).
- Простое и экономичное обслуживание благодаря горизонтальному расположению газоходов и извлекаемым турбулизаторам.

Состояние при поставке

Котловой блок с дверью котла и смонтированной теплоизоляшией

- 1 коробка с контроллером котлового контура и 1 пакет с технической документацией
- отдельная упаковка (кодирующий штекер и техническая документация)
- 1 коробка с жидкотопливной горелкой Vitoflame 200
- коробка с колпаком для жидкотопливной горелки Vitoflame 200
- 1 коробка с газовой горелкой Vitoflame 200 и колпаком горелки

Проверенное качество

Знак СЕ в соответствии с действующими директивами Европейского Союза.

Знак качества ÖVGW в соответствии с Положением о знаках качества 1942 DRG лист I для газовых и водяных приборов.

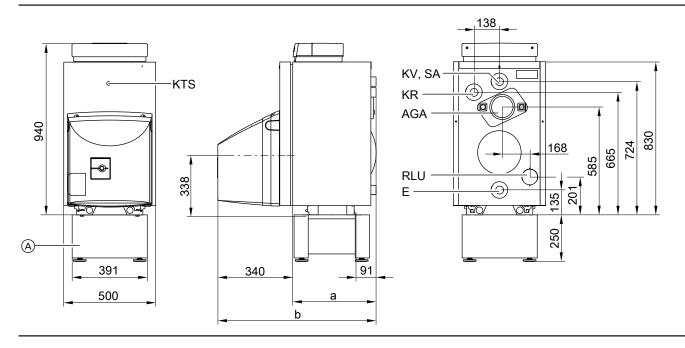
1.2 Условия эксплуатации

		Требования	Реализация
1.	Объемный расход теплоносителя	нет	
2.	Температура обратной маги-	нет	
	страли котла		
	(минимальное значение)		
3.	Нижний предел температуры кот-	нет	_
	ловой воды		

1.3 Технические данные

Номинальная тепловая мощность	кВт	18	22	27	33
Номинальная тепловая нагрузка	кВт	19,8	24,2	29,7	36,0
Идентификатор изделия			CE-064	5AU114	<u> </u>
Установочные размеры					
(с теплоизоляцией)					
Длина (размер а)	мм	515	650	790	790
Ширина = общая ширина	мм	500	500	500	500
Высота	мм	830	830	830	830
Габаритные размеры					
Общая длина (размер b)	мм	890	1025	1165	1165
Общая ширина	мм	500	500	500	500
Общая высота	мм	940	940	940	940
Высота опорной рамы	мм	250	250	250	250
Высота подставного					
емкостного водонагревателя					
– Объем 130 - 200 л	мм	654	654	654	654
Объем 350 л	MM	_	_	786	786
Масса котлового блока	КГ	89	120	152	152
Общая масса	КГ	128	165	202	202
водогрейный котел с теплоизоляцией,	N	120	105	202	202
горелка и контроллер котлового контура					
	л	27	35	44	44
Объем котловой воды	бар	3	33	3	3
Допуст. рабочее давление	Оар	ა	აა	3	
Соединительные патрубки водогрейного					
котла		447	447	447	447
Подающая и обратная магистраль котла	G	1½	1½	1½	1½
Патрубок аварийной линии	G	1½	1½	1½	1½
(предохранительный клапан)		447	447		447
Линия опорожения	G	1½	1½	1½	1½
Параметры уходящих газов ^{*1}					
Температура при					
– 40 °C температуры котловой воды	°C	145	145	145	145
– 75 °C температуры котловой воды	°C	170	170	170	170
Массовый расход					
для жидкого топлива EL и природного газа	кг/ч	31	38	46	56
Нормативный КПД	%		89 (H _s) /	94,5 (H _i)	
при темп. отопит. системы 75/60 °C			, 0,	,	
Патрубок дымохода	Øмм	130	130	130	130
Объем газоходов водогрейного котла	л	27	39	51	51
Аэродинамическое сопротивление*2	Па	7	8	8	8
Аэродинамическое сопротивление	мбар	0.07	0.08	0.08	0.08
*3		,	5	5	5
Необходимая тяга ^{*3}	Па	5		· ·	
V	мбар	0,05	0,05	0,05	0,05
Уровень звуковой мощности (по EN ISO 9614-2)					
 при эксплуатации с забором воздуха для горения из помещения установки 	дБ(А)		6.	2	

^{*1} Расчетные значения для проектирования системы удаления продуктов сгорания по EN 13384 в расчете на содержание 13 % CO_2 при использовании жидкого топлива EL и 10 % CO_2 при работе на природном газе.


Значения температуры уходящих газов как средние значения брутто по EN 304 (измерение выполнено 5 термоэлементами) при температуре воздуха для горения 20 °C.

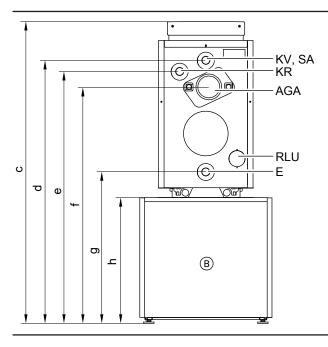
Температура уходящих газов при температуре котловой воды 40 °C является важным параметром при расчете параметров системы удаления продуктов сгорания.

Температура уходящих газов при температуре котловой воды 75 °C служит для определения области применения дымоходов при максимально допустимых рабочих температурах.

^{*2} Учесть при выборе горелки.

^{*3} Учесть при выборе параметров дымохода.

(А) Опорная рама


AGA Сборник уходящих газов

 Линия опорожнения и подключения мембранного расширительного бака KR Обратная магистраль котлового контура

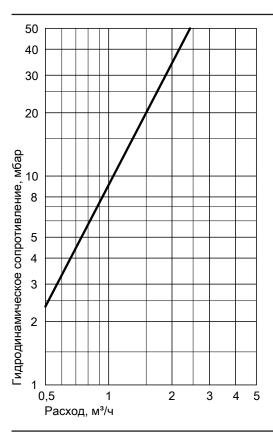
KTS Датчик температуры котла

KV Подающая магистраль котлового контура

SA Патрубок аварийной линии (предохранительный клапан)

Vitocell 100-Н или 300-Н
 (технические данные см. в главе "Емкостные водонагреватели")

AGA Сборник уходящих газов


 Линия опорожнения и подключения мембранного расширительного бака

- KR Обратная магистраль котлового контура
- KV Подающая магистраль котлового контура
- SA Патрубок аварийной линии (предохранительный клапан)

Таблица размеров

Номинальная тепловая мощность	кВт	18	22	2	7	3	3
С подставным емкостным водонагревате-	Л	130 - 200	130 - 200	130 - 200	350	160 и 200	350
лем							
a	MM	515	650	790	790	790	790
b	MM	890	1025	1165	1165	1165	1165
C	MM	1594	1594	1594	1726	1594	1726
d	MM	1380	1380	1380	1512	1380	1512
е	MM	1321	1321	1321	1453	1321	1453
f	MM	1237	1237	1237	1369	1237	1369
g	MM	791	791	791	923	791	923
h	MM	654	654	654	786	654	786

Гидродинамическое сопротивление в греющем контуре

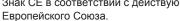
Vitorond 100 предназначен только для систем водяного отопления с принудительной циркуляцией.

Vitorond 100, тип VR2B, 40 - 100 кВт

2.1 Описание изделия

- A Струйная система циркуляции Jetflow для гидравлического распределения обратного потока (по температуре)
- Поверхность нагрева Eutectoplex из специального гомогенного серого чугуна
- © Контроллер цифрового программного управления котловым контуром Vitotronic
- Жидкотопливная горелка Vitoflame 200 Unit
- (E) Третий ход дымовых газов
- Камера сгорания

Основные преимущества


- Нормативный КПД: 89 % (H_s)/94,5 % (H_i).
- Поверхности нагрева Eutectoplex обеспечивают высокую эксплуатационную надежность и длительный срок службы.
- Литые сегменты с эластичным уплотнением для обеспечения долговечной герметизации дымовых газов.
- Струйная система циркуляции Jetflow обеспечивает оптимальное распределение котловой воды.
- Простой в использовании контроллер Vitotronic с индикацией текста и графики.
- Допускаются все сорта жидкого топлива EL. Также для жидкого топлива DIN 51603-6-EL A Bio 10: жидкое топливо EL с низким содержанием серы и добавлением до 10 % биокомпонентов
- Простое и экономичное обслуживание благодаря горизонтальному расположению газоходов и извлекаемым турбулизаторам.

Проверенное качество

ментация)

ческой документацией

Знак СЕ в соответствии с действующими директивами

Знак качества ÖVGW в соответствии с Положением о знаках качества 1942 DRG лист I для газовых и водяных приборов.

отдельная упаковка (кодирующий штекер и техническая доку-

коробка с контроллером котлового контура и 1 пакет с техни-

коробка с колпаком для жидкотопливной горелки Vitoflame

коробка с газовой горелкой Vitoflame 200 и колпаком горелки

коробка с жидкотопливной горелкой Vitoflame 200

Состояние при поставке

В зависимости от заказа:

- - котловой блок в цельном исполнении
- - котловой блок из отдельных сегментов (только 80 и 100 кВт)
- коробка с теплоизоляцией

2.2 Условия эксплуатации

Vitorond 100 мощностью 40 - 63 кВт

		Требования	Реализация
1.	Объемный расход теплоносителя	нет	_
2.	Температура обратной маги-	нет	_
	страли котла		
	(минимальное значение)		
3.	Нижний предел температуры кот-	нет	_
	ловой воды		

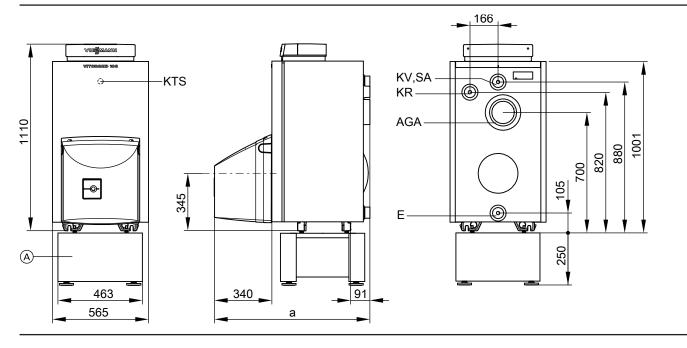
Vitorond 100 мощностью 80 и 100 кВт

		Требования	Реализация
1.	Объемный расход теплоносителя	нет	_
2.	Температура обратной маги-	нет	_
	страли котла		
	(минимальное значение)		
3.	Нижний предел температуры кот-	43 °C	С помощью контроллера Viessmann
	ловой воды		
4.	Двухступенчатый режим работы	1-я ступень на уровне 60 % номинальной тепловой	С помощью контроллера Viessmann
	горелки	мощности	
5.	Модулируемый режим работы	Между 60 и 100 % номинальной тепловой нагрузки	С помощью контроллера Viessmann
	горелки		
6.	Режим пониженной темп.	Работа с минимальной температурой котловой	С помощью контроллера Viessmann
		воды	
7.	Снижение температуры на выход-	аналогично режиму пониженной тепловой нагрузки	аналогично режиму пониженной тепло-
	ные дни		вой нагрузки

2.3 Технические данные

Номинальная тепловая мощность	кВт	40	50	63	80	100
Номинальная тепловая нагрузка	кВт	44	54	69	87	109
Идентификатор изделия			•	CE-0645AU114		
Размеры котлового блока						
Длина	MM	583	710	837	964	1091
Ширина	MM	512	512	512	512	512
Высота	MM	935	935	935	935	935
Габаритные размеры						
Общая длина (размер а)	MM	915	1040	1170	1378	1503
Общая ширина	MM	565	565	565	565	565
Общая высота	MM	1110	1110	1110	1110	1110
Высота опорной рамы	MM	250	250	250	_	_
Масса котлового блока	КГ	186	237	288	340	391
Общая масса	КГ	223	276	329	386	441
Водогрейный котел с теплоизоляцией,						
горелкой и контроллером котлового кон-						
тура						
Объем котловой воды	Л	50	63	76	89	102
Допуст. рабочее давление	бар	3	3	3	3	3
Соединительные патрубки водогрей-	•					
ного котла						
Подающая и обратная магистраль котла	G	2	2	2	2	2
Патрубок аварийной линии	G	2	2	2	2	2
(предохранительный клапан)						
Линия опорожения	G	2	2	2	2	2
Параметры уходящих газов ^{*4}						
Температура при						
40 °C температуры котловой воды	°C	145	145	145	145	145
75 °C температуры котловой воды и	-					
– Номинальная тепловая мощность	°C	170	170	170	170	170
частичная нагрузка	°C	_	_	_	115	115
Массовый расход						
для жидкого топлива EL и природного	кг/ч	68	85	107	129	151
газа						
Нормативный КПД	%		8	9 (H _s) / 94,5 (H	;)	
при темп. отопит. системы 75/60 °C	, ,		_	(1.5) 1 1,0 (1.	17	
Патрубок дымохода	Øмм	150	150	150	180	180
Объем газоходов водогрейного котла	Л	63	82	102	122	142
Аэродинамическое сопротивление *5	Па	8	11	13	25	45
Аэродинамическое сопротивление	мбар	0.08	0,11	0,13	0,25	0,45
*6	моар Па	5	5	5	5	5
Необходимая тяга ^{*6}				_	-	
	мбар	0,05	0,05	0,05	0,05	0,05
Уровень звуковой мощности (по EN ISO 9614-2)						
 при эксплуатации с забором воздуха для горения из помещения установки 	дБ(А)			63		

^{*4} Расчетные значения для проектирования системы удаления продуктов сгорания по EN 13384 в расчете на содержание 13 % CO_2 при использовании жидкого топлива EL и 10 % CO_2 при работе на природном газе.


Значения температуры уходящих газов как средние значения брутто по EN 304 (измерение выполнено 5 термоэлементами) при температуре воздуха для горения 20 °C.

Температура уходящих газов при температуре котловой воды 40 °C является важным параметром при расчете параметров системы удаления продуктов сгорания.

Температура уходящих газов при температуре котловой воды 75 °C служит для определения области применения дымоходов при максимально допустимых рабочих температурах.

^{*5} Учесть при выборе горелки.

^{5829 424} GUS *6 Учесть при выборе параметров дымохода.

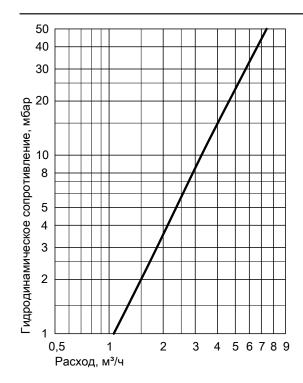
(А) Опорная рама

AGA Сборник уходящих газов

E Линия опорожнения и подключения мембранного расширительного бака

Таблица размеров

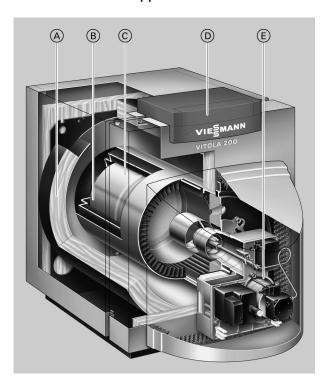
Номинальная	кВт	40	50	63	80	100
тепловая мощ-						
ность						
а	MM	915	1040	1170	1378	1503


KR Обратная магистраль котлового контура

KTS Датчик температуры котла

KV Подающая магистраль котлового контура

SA Патрубок аварийной линии (предохранительный клапан)


Гидродинамическое сопротивление в греющем контуре

Vitorond 100 предназначен только для систем водяного отопления с принудительной циркуляцией.

Vitola 200, тип VB2A, 18 - 63 кВт

3.1 Описание изделия

- А Высокоэффективная теплоизоляция
- (В) Комбинированные биферральные поверхности нагрева из чугуна и стали обеспечивают высокую эксплуатационную надежность и длительный срок службы.
- © Камера сгорания из нержавеющей стали; извлекаемое исполнение у типа VX2A с встроенным шумоглушителем
- Контроллер цифрового программного управления котловым контуром Vitotronic
- Жидкотопливная горелка Vitoflame 200 Unit возможен режим работы с забором воздуха для горения извне

Биферральные комбинированные поверхности нагрева котла Vitola 200 являются примером высокого качества и надежности. Котел Vitola 200 объединяет в себе комфорт и экономичность с умеренной ценой. Он является вехой в развитии отопительной техники.

Надежное и экономное отопление обеспечивается биферральными комбинированными поверхностями нагрева из чугуна и стали. В сочетании с широкими теплообменными поверхностями и большим водонаполнением они обеспечивают эффективную передачу тепла. Чтобы сократить до минимума потери тепла, водогрейный котел и емкостный водонагреватель защищены высокоэффективной теплоизоляцией.

Основные преимущества

- Нормативный КПД: 90% (H_s)/96% (H_i)
- Долговечные и многократно проверенные на практике комбинированные биферральные поверхности нагрева.
- Полностью отключается при отсутствии теплоотбора.
- Низкий уровень выбросов вредных веществ при сжигании топлива.
- Простой в использовании контроллер Vitotronic с индикацией текста и графики.
- Допускаются все сорта жидкого топлива EL. Также для жидкого топлива DIN 51603-6-EL A Bio 10: жидкое топливо EL с низким содержанием серы и добавлением до 10 % биокомпонентов (FAME)
- Идеально подходит для простой замены неисправного старого котпа

Состояние при поставке

Котловой блок с дверью котла

- 1 коробка с теплоизоляцией
- коробка с контроллером котлового контура и 1 пакет с технической документацией
- 1 коробка с жидкотопливной горелкой Vitoflame 200 или
 - газовая горелка Vitoflame 200
- 1 коробка с колпаком жидкотопливной горелки
 - щетка для чистки
- отдельная упаковка (кодирующий штекер и техническая документация)

Проверенное качество

Знак СЕ в соответствии с действующими директивами Европейского Союза.

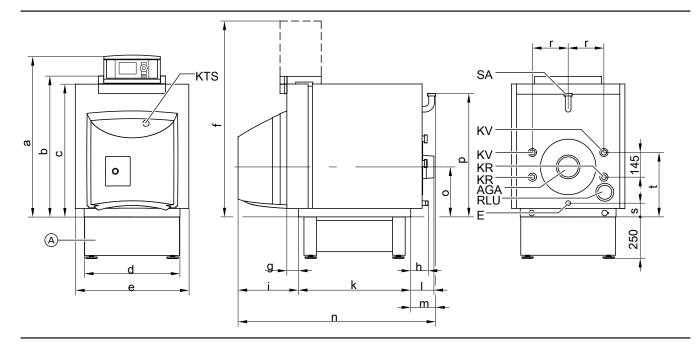
Знак качества ÖVGW в соответствии с Положением о знаках качества 1942 DRG лист I для газовых и водяных приборов.

3.2 Условия эксплуатации

		Требования	Реализация
1.	Объемный расход теплоносителя	нет	_
ω ² .	Температура обратной маги-	нет	_
30	страли котла		
4	(минимальное значение)		
$\frac{4}{2}$ $\frac{3}{2}$	Нижний предел температуры кот-	нет	_
53	ловой воды		

Vitola 200, тип VB2A, 18 - 63 кВт (продолжение)

3.3 Технические данные


Номинальная тепловая мощность								
– тип VB2A	кВт	18	22	27	33	40	50	63
Номинальная тепловая нагрузка								
– тип VB2A	кВт	20	24	29	36	44	54	69
Идентификатор изделия								
– тип VB2A				CE	-0085AQ06	695		
Размеры котлового блока								
Длина, k	MM	520	577	656	768	817	956	1070
Ширина, d	MM	492	537	565	565	674	702	702
Высота, р	MM	669	691	708	708	819	853	853
Габаритные размеры								
Общая длина, n	MM	1052	1109	1188	1300	1421	1560	1674
Общая ширина, е	MM	594	639	667	667	776	804	804
Общая высота, b (при эксплуатации)	MM	795	808	815	815	940	975	975
– Высота, а (контроллер в рабочем положении)	MM	914	927	934	934	1050	1085	1085
 Высота, f (контроллер в сервисном положе- 								
нии)	MM	1143	1156	1163	1163	1275	1310	1310
Высота опорной рамы	MM	250	250	250	250	250	250	250
Высота, z (с подставным емкостным водонагре-								
вателем)								
- Объем 130 - 200 л	MM	654	654	654	654	654	_	_
Объем 350 л	MM	_	_	786	786	786	786	
Масса котлового блока	КГ	113	135	164	185	260	335	367
Общая масса	КГ	148	171	201	223	311	388	422
водогрейный котел с теплоизоляцией,								
горелка и контроллер котлового контура								
Объем котловой воды	Л	49	61	76	89	140	199	223
Допуст. рабочее давление	бар	3	3	3	3	3	3	3
Соединительные патрубки водогрейного	•							
котла								
Подающая и обратная магистраль котла	G	1½	11/2	11/2	1½	1½	1½	1½
Патрубок аварийной линии (предохранитель-	G	1½	11/2	1½	1½	1½	1½	1½
ный клапан)								
Линия опорожения	R	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Параметры уходящих газов ^{*7}								
Температура								
– при температуре котловой воды 40 °C	°C	145	145	145	145	145	145	145
– при температуре котловой воды 75 °C	°C	165	165	165	165	165	165	165
Массовый расход при использовании жидкого	кг/ч	31	38	46	56	68	85	107
топлива EL и природного газа								
Нормативный КПД	%			90) (H _s) / 96 (H _i)		
при темп. отопит. системы 75/60 °C								
Патрубок дымохода	Ø мм	130	130	130	130	150	150	150
Объем газоходов водогрейного котла	л	39	53	73	78	110	157	173
	Па	7	8	8	10	10	12	1/3
Аэродинамическое сопротивление ^{*8}		1	-	_		1		
*0	мбар	0,07	0,08	0,08	0,10	0,10	0,12	0,14
Необходимая тяга ^{*9}	Па	5	5	5	5	5	5	5
Vacani aniinani naiina	мбар	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Уровень звуковой мощности (по EN ISO 9614-2)								
 при эксплуатации с забором воздуха для горения из помещения установки 	дБ(А)				63			

^{*7} Расчетные значения для проектирования системы удаления продуктов сгорания по EN 13384 в расчете на содержание 13 % CO₂ при использовании легкого котельного топлива EL и на содержание 10 % CO₂ при использовании природного газа.
Температуры уходящих газов как средние значения брутто по EN 304 при температуре воздуха для сжигания топлива 20 °C.

^{*8} Учесть при выборе горелки.

^{*9} Учесть при выборе параметров дымохода.

Vitola 200, тип VB2A, 18 - 63 кВт (продолжение)

Опорная рама

AGA Сборник уходящих газов

Е Линия опорожнения и подключения мембранного расширительного бака KR Обратная магистраль котлового контура

KTS Датчик температуры котла

KV Подающая магистраль котлового контура

SA Патрубок аварийной линии (предохранительный клапан)

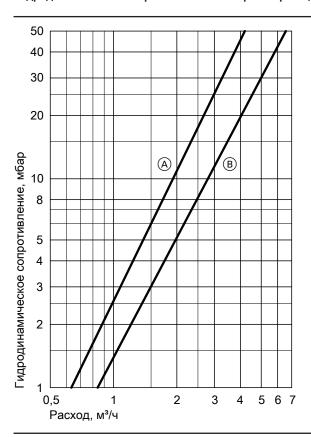
(B) Vitocell-H 100 или 300 (технические данные см. в разделе "Емкостные водонагреватели")

AGA Сборник уходящих газов

 Линия опорожнения и подключения мембранного расширительного бака KR Обратная магистраль котлового контура

KTS Датчик температуры котла

KV Подающая магистраль котлового контура


SA Патрубок аварийной линии (предохранительный клапан)

Vitola 200, тип VB2A, 18 - 63 кВт (продолжение)

Таблица размеров

Номинальная тепловая мощность	кВт	18	22	2	27	3	3	4	0	50	63
a	MM	914	927	93	34	93	34	10	50	1085	1085
b	MM	795	808	8′	15	81	15	94	10	975	975
С	MM	743	756	76	33	76	3	87	74	908	908
d	MM	492	537	56	35	56	35	67	' 4	702	702
е	MM	594	639	66	37	66	67	77	76	804	804
f	MM	1143	1156	11	63	110	63	12	75	1310	1310
g	MM	55	55	5	5	5	5	7	0	70	70
h	MM	92	92	9	2	9:	2	10)6	106	106
i	MM	393	393	39	93	39	93	44	18	448	448
k	MM	520	577	65	56	76	88	81	17	956	1070
I	MM	73	73	7	3	7:	3	14	14	144	144
m	MM	139	139	13	39	15	56	15	56	156	156
n	MM	1052	1109	11	88	13	00	14	21	1560	1674
0	MM	338	338	33	38	33	38	37	70	370	370
p	MM	669	691	70	08	70)8	81	19	853	853
r	MM	195	210	22	25	22	25	25	54	268	268
S	MM	144	126	11	10	11	10	11	12	85	85
t	MM	439	428	44	13	44	13	57	70	620	620
С подставным емкостным водона-	Л	130 -	130 -	130 -	350	160 и	350	200	350	350	_
гревателем		200	200	200		200					
u	MM	1449	1462	1469	1601	1469	1601	1594	1726	1761	_
V	MM	1397	1410	1417	1549	1417	1549	1528	1660	1694	_
W	MM	1093	1082	1097	1229	1097	1229	1224	1356	1406	_
X	MM	992	992	992	1124	992	1124	1024	1156	1156	_
у	MM	798	780	764	896	764	896	766	898	871	_
Z	MM	654	654	654	786	654	786	654	786	786	_

Гидродинамическое сопротивление со стороны греющего контура

Водогрейный котел Vitola 200 предназначен только для систем водяного отопления с принудительной циркуляцией.

А 18 - 33 кВтВ 40 - 63 кВт

Емкостный водонагреватель

Ниже приведены технические характеристики емкостных водонагревателей, для которых можно приобрести межсоединения с водогрейным котлом (см. прайс-лист Viessmann).

Для емкостных водонагревателей с водонаполнением более 500 л и других емкостных водонагревателей из прайс-листа Viessmann соединительные трубопроводы предоставляются заказчиком.

Указание

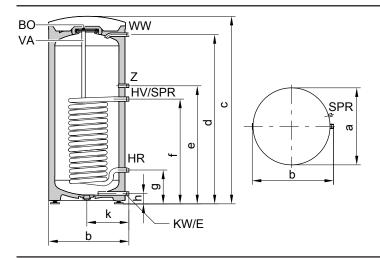
- Для определения размера водонагревателя см. инструкцию по проектированию Vitocell.
- При использовании в сочетании с функцией приготовления горячей воды и поддержкой отопления см. инструкцию по проектированию Vitosol.

4.1 Технические характеристики Vitocell 100-V, тип CVA

Для приготовления горячей воды в сочетании с водогрейными котлами и системами централизованного отопления, по выбору с электронагревательной вставкой в качестве принадлежности для емкостного водонагревателя объемом 300 и 500 л.

- рабочее давление греющего контура до 25 бар
- рабочее давление контура ГВС до 10 бар

Предназначен для следующих установок:


- температура воды в контуре водоразбора ГВС до 95 °C
- температура подачи греющего контура до 160 °C

Объем водонагревателя		л	160	200	300	500	750	1000
Регистрационный номер по DIN					0241/06-	-13 MC/E		
Длительная производитель-	90 °C	кВт	40	40	53	70	123	136
ность	00 0	л/ч	982	982	1302	1720	3022	3341
при подогреве воды в контуре	80 °C	кВт	32	32	44	58	99	111
водоразбора ГВС с 10 до 45 °С и	00 0	л/ч	786	786	1081	1425	2432	2725
температуре подачи в греющем	70 °C	кВт	25	25	33	45	75	86
контуре при приведенном ниже	70 0	л/ч	614	614	811	1106	1843	2113
расходе теплоносителя	60 °C	кВт	17	17	23	32	53	59
расходо топлоносители	00 0	л/ч	417	417	565	786	1302	1450
	50 °C	кВт	9	9	18	24	28	33
	30 C	л/ч	221	221	442	589	688	810
Длительная производитель-	90 °C	кВт	36	36	45	53	102	121
ность	90 C	л/ч	619	619	774	911	1754	2081
	80 °C	кВт	28	28	34	44	77	91
при подогреве воды в контуре водоразбора ГВС с 10 до 60℃ и	60 C	л/ч	482	482	584	756	1324	1565
температуре подачи в греющем	70 °C		19	19	23	33	53	61
	70 C	кВт	327	327	_			
контуре при приведенном ниже		л/ч	321	327	395	567	912	1050
расходе теплоносителя		м ³ /ч	3,0	2.0	2.0	3,0	F 0	5,0
Расход теплоносителя при указа	ннои	м°/ч	3,0	3,0	3,0	3,0	5,0	5,0
долговременной мощности	FOTOBUO	кВтч/	1,50	1,70	2,20	3,20	3,70	4,30
Затраты тепла на поддержание	готовно-	квтч/ 24 ч	1,50	1,70	2,20	3,20	3,70	4,30
сти q _{вs}		24 4						
при разности температур 45 К (рез	зультаты							
измерений согласно DIN 4753-8.								
500 л : нормативный показатель по)							
DIN V 18599)								
Размеры								
Длина (∅)	•		E01	E01	622	850	960	1060
– с теплоизоляцией	а	MM	581	581	633			
 без теплоизоляции 		MM	_	_	_	650	750	850
Ширина	b		608	608	705	898	1046	1144
– с теплоизоляцией	D	MM	000	000	705	837	947	1047
 без теплоизоляции Высота 		MM	_	_	_	037	947	1047
	С		1189	1409	1746	1955	2100	2160
с теплоизоляциейбез теплоизоляции	C	MM	1109	1409	1740	1844	2005	2060
- оез теплоизоляции Кантовальный размер		MM	_	_	_	1044	2005	2000
– с теплоизоляцией		MM	1260	1460	1792			
– с теплоизоляцией– без теплоизоляции		MM	1200	1400	1732	1860	2050	2100
Монтажная высота		MM	_	_	_	2045	2190	2250
			86	97	151	181		367
Масса в сборе с теплоизоляцией		КГ	5,5	5,5	10,0		295	
Объем теплоносителя		Л				12,5	24,5	26,8
Площадь теплообменных повер	хностеи	M ²	1,0	1,0	1,5	1,9	3,7	4,0
Подключения		D		4			ا بير	,,,,
Подающ. и обрат. магистраль грек	ощего	R	1	1	1	1	11/4	11/4
контура		D		2.1		44.		447
Холодная вода, горячая вода		R	3/4	3/4	1	11/4	11/4	11/4
Циркуляционный трубопровод		R	3/4	3/4	1	1	11/4	11/4

Указание по длительной производительности

При проектировании установки с указанной или рассчитанной длительной производительностью следует предусмотреть соответствующий насос. Указанная длительная производительность достигается только при условии, что номинальная тепловая мощность водогрейного котла ≥ длительной производительности.

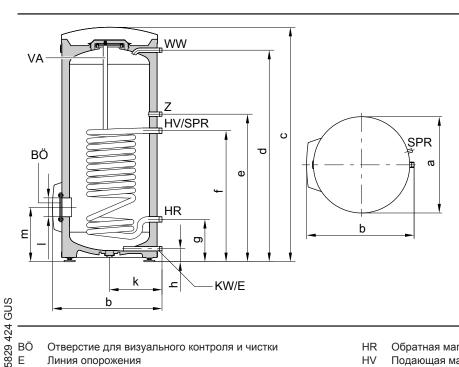
Объем 160 и 200 литров

ΒÖ Отверстие для визуального контроля и чистки

Ε Линия опорожения

HR Обратная магистраль греющего контура

HVПодающая магистраль греющего контура


Трубопровод холодной воды KW

SPR Погружная гильза для датчика температуры емкостного водонагревателя или термостатический для регулятора температуры

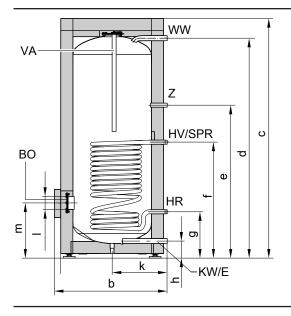
VA Магниевый защитный анод WW Трубопровод горячей воды Ζ Циркуляционный трубопровод

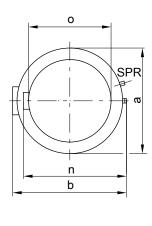
Объем водона	гре-	Л	160	200
вателя				
Длина (∅)	а	MM	581	581
Ширина	b	MM	608	608
Высота	С	MM	1189	1409
	d	MM	1050	1270
	е	MM	884	884
	f	MM	634	634
	g	MM	249	249
	h	MM	72	72
	k	MM	317	317

Объем 300 л

ΒÖ Отверстие для визуального контроля и чистки Ε Линия опорожения

- Обратная магистраль греющего контура HR
- HVПодающая магистраль греющего контура


KW Трубопровод холодной воды


SPR Гильза для датчика температуры емкостного водонагревателя или термостатический для регулятора температуры

Объем водонагр	ева-	Л	300
теля			
Длина (∅)	а	MM	633
Ширина	b	MM	705
Высота	С	MM	1746
	d	MM	1600
	е	MM	1115
	f	MM	875
	g	MM	260
	h	MM	76
	k	MM	343
	I	MM	Ø 100
	m	MM	333

VA Магниевый защитный анод WW Трубопровод горячей воды Z Циркуляционный трубопровод

Объем 500 л

ВО Отверстие для визуального контроля и чистки

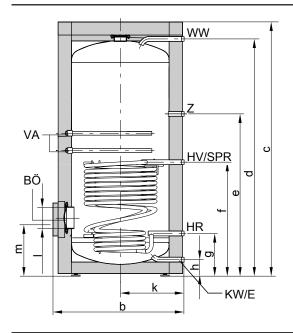
Е Линия опорожения

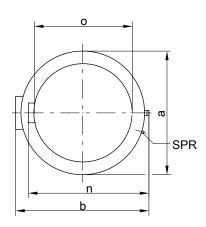
HR Обратная магистраль греющего контура

HV Подающая магистраль греющего контура

KW Трубопровод холодной воды

SPR Погружная гильза для датчика температуры емкостного водонагревателя или термостатический для регулятора температуры


Объем водонагрева- теля		л	500
Длина (∅)	а	MM	850
Ширина	b	MM	898
Высота	С	MM	1955
	d	MM	1784
	е	MM	1230
	f	MM	924
	g	MM	349
	h	MM	107
	k	MM	455
	I	MM	Ø 100
	m	MM	422
	n	MM	837
без теплоизоляции	0	MM	Ø 650


VA Магниевый защитный анод

WW Трубопровод горячей воды

Z Циркуляционный трубопровод

Объем 750 и 1000 литров

ВО Отверстие для визуального контроля и чистки

Е Линия опорожения

HR Обратная магистраль греющего контура

HV Подающая магистраль греющего контура

KW Трубопровод холодной воды

SPR Погружная гильза для датчика температуры емкостного водонагревателя или термостатический для регулятора температуры

VA Магниевый защитный анод WW Трубопровод горячей воды Z Циркуляционный трубопровод

Объем водонагрева-		л	750	1000
теля				
Длина (∅)	а	MM	960	1060
Ширина	b	MM	1046	1144
Высота	С	MM	2100	2160
	d	MM	1923	2025
	е	MM	1327	1373
	f	MM	901	952
	g	MM	321	332
	h	MM	104	104
	k	MM	505	555
	1	MM	Ø 180	Ø 180
	m	MM	457	468
	n	MM	947	1047
без теплоизоляции	0	ММ	Ø 750	Ø 850

Коэффициент производительности N_L

Согласно DIN 4708

Температура запаса воды в емкостном водонагревателе T_{sp} = температура входа холодной воды + 50 K ^{+5 K/-0 K}

Объем водонагревателя л	160	200	300	500	750	1000
Коэффициент производительности N _L при тем-						
пературе подачи теплоносителя						
90 °C	2,5	4,0	9,7	21,0	40,0	45,0
80 °C	2,4	3,7	9,3	19,0	34,0	43,0
70 °C	2,2	3,5	8,7	16,5	26,5	40,0

Указания по коэффициенту производительности N_L

Коэффициент производительности N_L изменяется в зависимости от температуры запаса воды в емкостном водонагревателе $T_{\rm eod}$.

Нормативные показатели

- $T_{eod} = 60 \text{ °C} \rightarrow 1.0 \times N_L$
- \blacksquare $T_{eod} = 55 \ ^{\circ}C \rightarrow 0.75 \times N_L$
- \blacksquare $T_{so\partial} = 50 \, ^{\circ}\text{C} \rightarrow 0.55 \, \times N_L$
- \blacksquare $T_{eo\partial} = 45$ °C \rightarrow 0,3 × N_L

Кратковременная производительность (10-минутная)

Относительно коэффициента производительности N_L.

Приготовление горячей воды с 10 до 45 °C.

Объем водонагревателя	л 160	200	300	500	750	1000
Кратковременная производительность (л/10 ми	н)					
при температуре подачи теплоносителя						
90 °C	210	262	407	618	898	962
80 °C	207	252	399	583	814	939
70 °C	199	246	385	540	704	898

Максимальный расход воды (10-минутный)

Относительно коэффициента производительности N_L .

С догревом.

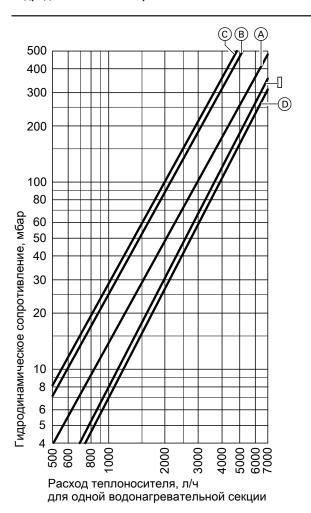
Приготовление горячей воды с 10 до 45 °C.

Объем водонагревателя л	160	200	300	500	750	1000
Максимальный расход воды (л/мин) при темпера-						
туре подачи теплоносителя						
90 °C	21	26	41	62	90	96
80 °C	21	25	40	58	81	94
70 °C	20	25	39	54	70	90

Возможный расход воды

Водонагреватель нагрет до 60 °C.

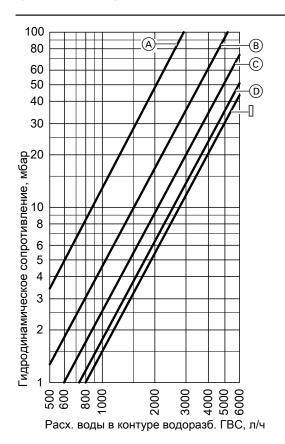
Без догрева.


Объем водонагревателя	л	160	200	300	500	750	1000
Норма водоразбора	л/мин	10	10	15	15	20	20
Возможный расход воды	Л	120	145	240	420	615	835
вода при t = 60 °C (пост.)							

Время нагрева

Приведенные периоды нагрева достигаются только в случае, если при соответствующей температуре подачи и нагреве контура водоразбора ГВС с 10 до 60 °С обеспечена максимальная долговременная мощность емкостного водонагревателя.

Объем водонагревателя л	160	200	300	500	750	1000
Период нагрева (мин) при температуре подачи теп-						
лоносителя						
90 °C	19	19	23	28	24	36
80 °C	24	24	31	36	33	46
70 °C	34	37	45	50	47	71


Гидродинамическое сопротивление

Гидродинамическое сопротивление в греющем контуре

- Объем водонагревателя 160 и 200 л
- (B) Объем водонагревателя 300 л

- © (D) Объем водонагревателя 500 л
- Объем водонагревателя 750 л
- Объем водонагревателя 1000 л

Гидродинамическое сопротивление в контуре ГВС

- Объем водонагревателя 160 и 200 л
- В Объем водонагревателя 300 л
- (C) Объем водонагревателя 500 л
- (D) Объем водонагревателя 750 л
- Объем водонагревателя 1000 л

Состояние при поставке

Vitocell 100-W, тип CVA Объем 160 - 300 л

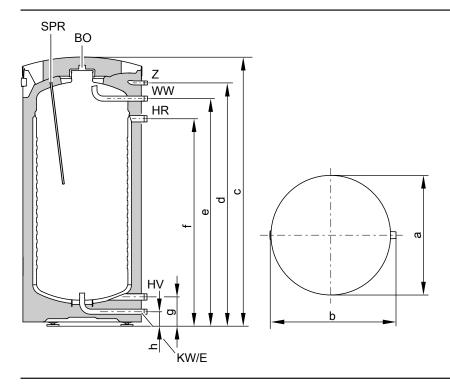
Стальной емкостный водонагреватель с внутренним эмалевым покрытием "Ceraprotect"

- Вварная погружная гильза для датчика температуры водонагревателя или терморегулятора
- Ввинченные регулируемые опоры

- Магниевый защитный анод
- Смонтированная теплоизоляция Цвет облицовки - белый.

4.2 Технические характеристики Vitocell 300-V, тип EVA

Для приготовления горячей воды в сочетании с водогрейными котлами, **с наружным нагревом**


Предназначен для установок с

- температурой подачи греющего контура до 110 °C
- рабочим давлением на стороне греющего контура до 3 бар
- рабочее давление контура ГВС до 10 бар

Объем водонагревателя		л	130	160	200
Регистрационный номер по DIN				0166/09-10MC	
Длительная производительность	90 °C	кВт	37	40	62
при подогреве воды в контуре водоразбора		л/ч	909	982	1523
ГВС с 10 до 45 °С и температуре подачи в	80 °C	кВт	30	32	49
греющем контуре при приведенном ниже		л/ч	737	786	1024
расходе теплоносителя	70 °C	кВт	22	24	38
		л/ч	540	589	933
	60 °C	кВт	13	15	25
		л/ч	319	368	614
	50 °C	кВт	9	10	12
		л/ч	221	245	294
Длительная производительность	90 °C	кВт	32	36	57
при подогреве воды в контуре водоразбора		л/ч	550	619	980
ГВС с 10 до 60 °С и температуре подачи в	80 °C	кВт	25	28	43
греющем контуре при приведенном		л/ч	430	481	739
ниже расходе теплоносителя	70 °C	кВт	16	19	25
		л/ч	275	326	430
Расход теплоносителя		м ³ /ч	3,0	3,0	3,0
при указанной долговременной мощности					
Затраты тепла на поддержание готовно-		кВтч/24 ч	1,30	1,40	1,60
сти q _{гот} при разности температур 45 К (зна-					
чения, измеренные согласно DIN 4753-8)					
Размеры					
Длина (∅), а		MM	633	633	633
Ширина, b		MM	667	667	667
Высота, с		MM	1111	1203	1423
Кантовальный размер		MM	1217	1297	1493
Macca		КГ	77	84	98
Емкостный водонагреватель с теплоизоляци	ей				
Объем теплоносителя		Л	25	28	35
Площадь теплообменных поверхностей		M^2	1,1	1,3	1,6
Подключения					
Подающ. и обрат. магистраль греющего конт	ура	R	1	1	1
Холодная вода, горячая вода		R	3/4	3/4	3/4
Циркуляционный трубопровод		R	1/2	1/2	1/2

Указание по длительной производительности

При проектировании установки с указанной или рассчитанной длительной производительностью следует предусмотреть соответствующий насос. Указанная длительная производительность достигается только при условии, что номинальная тепловая мощность водогрейного котла ≥ длительной производительности.

ВО Отверстие для визуального контроля и чистки

Ε Линия опорожения

HR Обратная магистраль греющего контура

HVПодающая магистраль греющего контура

Трубопровод холодной воды ΚW

SPR Погружная гильза для датчика температуры емкостного водонагревателя или терморегулятора

WW Трубопровод горячей воды

Циркуляционный трубопровод

Таблица размеров

raesmaa paemopes				
Объем водонагрева-	Л	130	160	200
теля				
а	MM	633	633	633
b	MM	667	667	667
С	MM	1111	1203	1423
d	MM	975	1067	1287
е	MM	892	984	1204
f	MM	785	877	1097
g	MM	155	155	155
h	MM	77	77	77

Коэффициент производительности N_L

по DIN 4708

Температура запаса воды в емкостном водонагревателе $T_{вод}$ = температура холодной воды на входе + 50 K $^{+5\ \text{K}/-0\ \text{K}}$

Объем водонагревателя	Л	130	160	200
Коэффициент мощности N _L				
при температуре подачи греющего контура				
90 °C		2,4	3,3	6,8
80 °C		1,9	2,9	5,2
70 °C		1 4	20	3.2

Указания по коэффициенту производительности $N_{\rm L}$

Коэффициент производительности $N_{\rm L}$ изменяется в зависимости от температуры запаса воды в емкостном водонагревателе $T_{eo\partial}$.

Нормативные показатели

- $T_{eo∂}$ = 60 °C \rightarrow 1,0 × N_L
- 5829 424 GUS
 - \blacksquare $T_{eo\partial}$ = 50 °C \rightarrow 0,55 × N_L
 - \blacksquare T_{eod} = 45 $^{\circ}C \rightarrow 0.3 \times N_L$

Кратковременная производительность (10-минутная)

При коэффициенте мощности N_L

Подогрев воды в контуре ГВС с 10 до 45 $^{\circ}$ С

Объем водонагревателя	Л	130	160	200
Кратковременная производительность (л/10 мин)				
при температуре подачи греющего контура				
90 °C		207	240	340
80 °C		186	226	298
70 °C		164	190	236

Максимальный расход воды (10-минутный)

При коэффициенте мощности N_L

С догревом

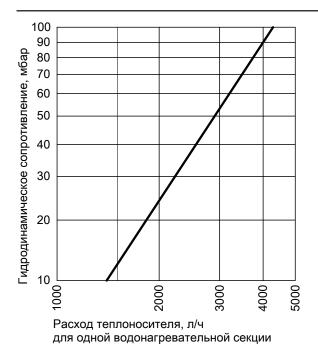
Подогрев воды в контуре ГВС с 10 до 45 $^{\circ}$ С

Объем водонагревателя	Л	130	160	200
Максимальный расход воды (л/мин)				
при температуре подачи греющего контура				
90 °C		21	24	34
80 °C		19	23	30
70 °C		16	19	24

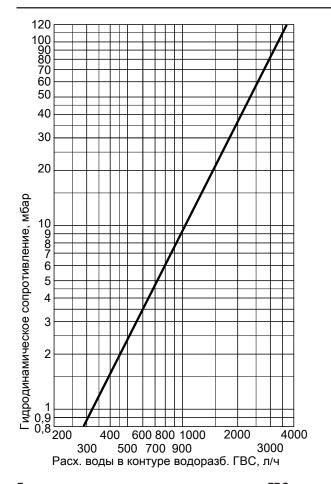
Возможный расход воды

Водонагреватель нагрет до 60 °C.

Без догрева


Объем водонагревателя	л	130	160	200
Норма водоразбора	л/мин	10	10	10
Возможный расход воды	Л	103	120	150
Вода при $t = 60 ^{\circ}$ C (пост.)				

Время нагрева


Приведенные данные о времени нагрева достигаются только в случае, если при соответствующей температуре подачи и нагреве воды в контуре ГВС с 10 до 60 °С обеспечена максимальная долговременная мощность емкостного водонагревателя.

Объем водонагревателя	л	130	160	200
Время нагрева (мин)				
при температуре подачи греющего контура				
90 °C		15	15	12
80 °C		19	19	16
70 °C		29	29	24

Гидродинамическое сопротивление

Гидродинамическое сопротивление в греющем контуре

Гидродинамическое сопротивление в контуре ГВС

Состояние при поставке

Vitocell 300-V, тип EVA, с наружным нагревом Объем 130 - 200 л

Емкостный водонагреватель из высоколегированной нержавеющей стали (на стороне горячей воды) с установленной теплоизоляцией.

- встроенная погружная гильза для датчика температуры водонагревателя или терморегулятора
- встроенный термометр
- ввинченные регулируемые опоры

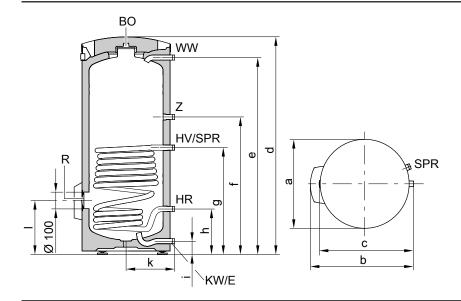
Цвет облицовки - серебристый

Емкостные водонагреватели объемом 160 и 200 л поставляются также белого цвета.

4.3 Технические характеристики Vitocell 300-V, тип EVI

Для приготовления горячей воды в сочетании с водогрейными котлами и системами централизованного отопления, по выбору с электронагревателем в качестве дополнительного оборудования.

Предназначен для следующих установок:

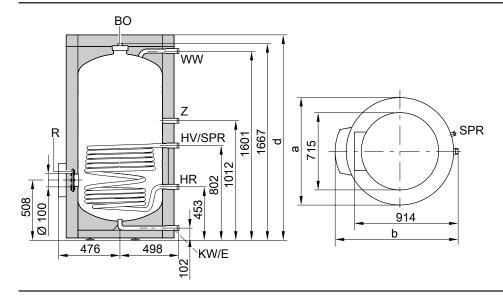

- температура воды в контуре водоразбора ГВС до 95 °C
- температура подачи греющего контура до 200 °C
- рабочее давление греющего контура до 25 бар
- рабочее давление контура водоразбора ГВС до 10 бар

Объем водонагревателя	л	200	300	500
Регистрационный номер по DIN			0071/06-10 MC/E	
Долговременная мощность	90 °С кВт	71	93	96
при подогреве воды в контуре водораз-	л/ч	1745	2285	2358
бора ГВС с 10 до 45 °С и температуре	80 °С кВт	56	72	73
подачи греющего контура при приве-	л/ч	1376	1769	1793
денном ниже расходе теплоносителя	70 °С кВт	44	52	56
	л/ч	1081	1277	1376
	60 °С кВт	24	30	37
	л/ч	590	737	909
	50 °С кВт	13	15	18
	л/ч	319	368	442
Долговременная мощность	90 °С кВт	63	82	81
при подогреве воды в контуре водораз-	л/ч	1084	1410	1393
	80 °С кВт	48	59	62
подачи в греющем контуре при приве-	л/ч	826	1014	1066
денном ниже расходе теплоносителя	70 °С кВт	29	41	43
	л/ч	499	705	739
Расход теплоносителя при указанной долго	,	5,0	5,0	6,5
менной мощности				
Затраты тепла на поддержание готовност	и q_{BS} кВтч/24 ч	1,70	2,10	3,00
при разности температур 45 К (результаты и ний согласно DIN 4753-8)	змере-			
Размеры				
Длина (Ø), а				
длина (છ), а – с теплоизоляцией	ММ	581	633	923
– с теплоизоляциеи – без теплоизоляции	MM	301	033	715
— оез теплоизоляции Ширина, b	IVIIVI	_	_	713
— с теплоизоляцией	ММ	649	704	974
– 6 теплоизоляцией– без теплоизоляции	MM	043	704	914
Высота, d	IVIIVI			014
– с теплоизоляцией	MM	1420	1779	1740
без теплоизоляции	MM		_	1667
Кантовальный размер				
– с теплоизоляцией	MM	1471	1821	_
– без теплоизоляции	MM	_	_	1690
Масса в сборе с теплоизоляцией	КГ	76	100	111
Объем теплоносителя	Л	10	11	15
Площадь теплообменных поверхнос-	M ²	1,3	1,5	1,9
тей .				
Подключения	,			
Подающ. и обрат. магистраль греющего конт	ypa R	1	1	11/4
Холодная вода, горячая вода	R	1	1	11⁄4
Циркуляционный трубопровод	R	1	1	11/4

Указание по долговременной мощности

При проектировании установки с указанной или рассчитанной долговременной мощностью следует предусмотреть соответствующий насос. Указанная долговременная мощность достигается только при условии, что номинальная тепловая мощность водогрейного котла ≥ долговременной мощности.

Объем 200 и 300 л



- ВО Отверстие для визуального контроля и чистки
- Е Линия опорожения
- HR Обратная магистраль греющего контура
- HV Подающая магистраль греющего контура
- KW Трубопровод холодной воды
- R Дополнительное отверстие для чистки или электронагревательная вставка

Объем водонагревателя	л	200	300
а	ММ	581	633
b	MM	649	704
С	MM	614	665
d	MM	1420	1779
е	MM	1286	1640
f	MM	897	951
g	MM	697	751
h	MM	297	301
i	MM	87	87
k	MM	317	343
1	MM	353	357

- SPR Датчик температуры емкостного водонагревателя или термостатический регулятор (патрубок R 1 с переходной муфтой на R $\frac{1}{2}$ для погружной
 - (патруоск к те переходной муфтой на к /2 для погружно
- WW Трубопровод горячей воды
- Z Циркуляционный трубопровод

500 л

- ВО Отверстие для визуального контроля и чистки
- Е Линия опорожения
- HR Обратная магистраль греющего контура
- HV Подающая магистраль греющего контура
- KW Трубопровод холодной воды
- R Дополнительное отверстие для чистки или электронагревательная вставка

Объем водонагревателя	I	500
a	MM	923
b	MM	974
d	MM	1740

- SPR Датчик температуры емкостного водонагревателя или термостатический регулятор
 - (патрубок R 1 с переходной муфтой на R ½ для погружной гильзы)
- WW Трубопровод горячей воды
- Z Циркуляционный трубопровод

Коэффициент производительности N_L

Согласно DIN 4708

Температура запаса воды в емкостном водонагревателе T_{sp} = температура входа холодной воды + 50 K +5 K/-0 K

Объем водонагревателя	200	300	500
Коэффициент производительности N _L при температуре подачи тепло-			
носителя			
90 °C	6,8	13,0	21,5
80 °C	6,0	10,0	21,5
70 °C	3,1	8,3	18,0

Указания по коэффициенту производительности $N_{\rm L}$

Коэффициент производительности N_L изменяется в зависимости от температуры запаса воды в емкостном водонагревателе $T_{\rm eod}$.

Нормативные показатели

- $T_{eod} = 60 \text{ °C} \rightarrow 1.0 \times N_L$
- \blacksquare T_{eod} = 55 °C \rightarrow 0,75 × N_L
- $\blacksquare \ T_{eo\partial} = 50 \ ^{\circ}C \rightarrow 0,55 \times N_L$
- \blacksquare $T_{eo\partial} = 45$ °C $\rightarrow 0.3 \times N_L$

Кратковременная производительность (10-минутная)

Относительно коэффициента производительности N_{L} .

Подогрев воды в контуре водоразбора ГВС с 10 до 45 °C.

Объем водонагревателя	200	300	500
Кратковременная производительность (л/10 мин) при температуре			
подачи теплоносителя			
90 °C	340	475	627
80 °C	319	414	627
70 °C	233	375	566

Максимальный расход воды (10-минутный)

Относительно коэффициента производительности N_L.

С догревом

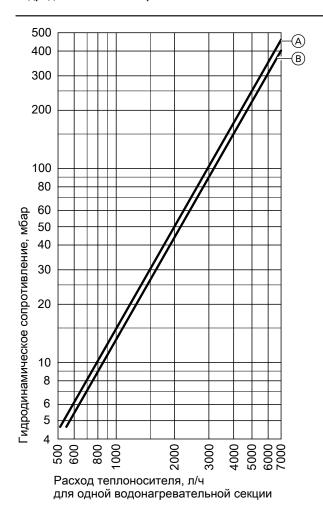
Подогрев воды в контуре водоразбора ГВС с 10 до 45 °C.

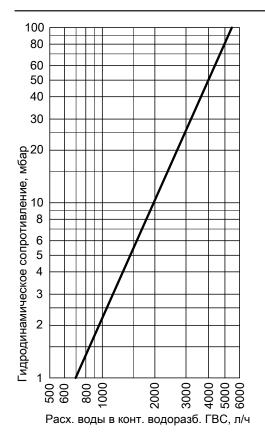
Объем водонагревателя	200	300	500
Максимальный расход воды (л/мин) при температуре подачи теплоно-			
сителя			
90 °C	34	48	63
80 °C	32	42	63
70 °C	23	38	57

Возможный расход воды

Водонагреватель нагрет до 60 °C.

Без догрева.


Объем водонагревателя	I	200	300	500
Норма водоразбора	л/мин	10	15	15
Возможный расход воды	I	139	272	460
вода при t = 60 °C (пост.)				


Время нагрева

Приведенные данные о времени нагрева достигаются только в том случае, если при соответствующей температуре подачи теплоносителя и нагреве воды в контуре ГВС с 10 до 60 °С обеспечена максимальная долговременная мощность емкостного водонагревателя.

Объем водонагревателя	л	200	300	500
Время нагрева (мин) при температуре подачи теплоносителя				
90 °C		14,4	15,5	20,0
80 °C		15,0	21,5	24,0
70 °C		23,5	32,5	35,0

Гидродинамическое сопротивление

Гидродинамическое сопротивление в контуре ГВС

Гидродинамическое сопротивление в греющем контуре

- Объем водонагревателя 300 и 500 л
- Объем водонагревателя 200 л

Состояние при поставке

Vitocell 300-V, тип EVI, с внутренним нагревом Объем 200 и 300 л

Емкостный водонагреватель из высоколегированной нержавеющей стали с установленной теплоизоляцией.

- присоединительный патрубок для датчика температуры водонагревателя или терморегулятора
- встроенный термометр
- ввинченные регулируемые опоры

Отдельно упакованы и закреплены на упаковке:

- переходная муфта R 1 × ½
- погружная гильза
- теплоизолирующая деталь для погружной гильзы Цвет облицовки - серебристый

Vitocell 300-V, тип EVI, с внутренним нагревом Объем 500 п

Емкостный водонагреватель из высоколегированной нержавеющей стали с отдельно упакованной теплоизоляцией.

- присоединительный патрубок для датчика температуры водонагревателя или терморегулятора
- ввинченные регулируемые опоры

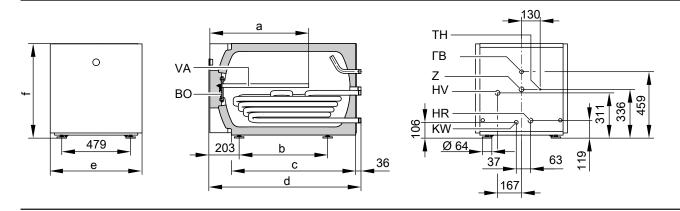
Отдельно упакованы и закреплены на упаковке:

- термометр
- переходная муфта R 1 × ½
- погружная гильза
- теплоизолирующая деталь для погружной гильзы

Цвет пластикового покрытия листовой облицовки - серебристый

4.4 Технические данные Vitocell 100-H, тип СНА

Для приготовления горячей воды в сочетании с водогрейными котлами


Предназначен для установок с

- температурой подачи греющего контура до 110 °C
- температурой воды в контуре водоразбора ГВС до 95 °C
- рабочим давлением на стороне **греющего контура** до **10 бар**
- рабочим давлением на стороне контура водоразбора ГВС до 10 бар

Объем		Л	130	160	200	
Регистрационный номер по DIN				0243/06-13 MC/E		
Долговременная мощность	90 °C	кВт	28	33	42	
при подогреве воды в контуре водораз-	90 C	л/ч	688	810	1032	
бора ГВС с 10 до 45 °С и температуре	80 °C	кВт	23	28	32	
подачи греющего контура при при-		л/ч	565	688	786	
веденном ниже расходе теплоноси-	70 °C	кВт	19	22	26	
теля	70 0	л/ч	466	540	638	
	60 °C	кВт	14	16	18	
		л/ч	344	393	442	
Долговременная мощность	90 °C	кВт	27	32	38	
при подогреве воды в контуре водораз-		л/ч	464	550	653	
бора ГВС с 10 до 60 °С и температуре	80 °C	кВт	20	24	29	
подачи греющего контура при при-		л/ч	344	412	498	
веденном ниже расходе теплоноси-	70 °C	кВт	14	17	19	
теля	70 0	л/ч	241	292	326	
Расход теплоносителя		м ³ /ч	3,0	3,0	3,0	
при указанной долговременной мощно-						
СТИ						
Затраты теплоты на поддержание гот		кВтч/24 ч	1,20	1,30	1,50	
q _{гот} при разности температур 45 K (изм	еренные					
значения по DIN 4753-8)						
Габаритные размеры						
Общая длина, d		MM	907	1052	1216	
Общая ширина, е		MM	640	640	640	
Общая высота, f		MM	654	654	654	
Масса		КГ	90	103	116	
емкостного водонагревателя с теплои-						
золяцией						
Объем змеевика греющего контура		Л	5,5	7	8	
Площадь теплообменных поверх-		M^2	0,8	1	1,2	
ностей						
Подключения						
Подающая и обратная магистраль		R	1	1	1	
греющего контура						
Холодная вода и горячая вода		R	3/4	3/4	3/4	
Циркуляционный трубопровод	-	R	1	1	1	

Указание по долговременной мощности

При проектировании установки для работы с указанной или рассчитанной долговременной мощностью предусмотреть соответствующий насос загрузки водонагревателя. Указанная долговременная мощность достигается только при условии, что номинальная тепловая мощность водогрейного котла ≥ долговременной мощности.

- ВО Отверстие для визуального контроля и чистки
- HR Обратная магистраль греющего контура
- HV Подающая магистраль греющего контура
- KW Вход холодной воды
- TH Погружная гильза для датчика температуры водонагревателя или термостатного регулятора

Объем	л	130	160	200
а	MM	200	250	300
b	MM	471	616	780
С	MM	721	866	1030
d	MM	907	1052	1216
Т	MM	640	640	640
f	MM	654	654	654

Размер а: минимальное расстояние до стены, необходимое для демонтажа и монтажа магниевого защитного электрода.

- VA Магниевый электрод
- ГВ Трубопровод горячей воды
- Z Циркуляционный трубопровод

Коэффициент производительности N_L

по DIN 4708

Температура запаса воды в емкостном водонагревателе T_{sp} = температура входа холодной воды +50 K +5 K/-0 K

Объем	Л	130	160	200
Коэффициент мощности N _L				
при температуре подачи греющего ког	нтура			
90 °C		1,3	2,2	3,5
80 °C		1,3	2,2	3,5
70 °C		1,1	1,6	2,5

Указания к коэффициенту мощности N_L

Коэффициент мощности N_L меняется в зависимости от температуры воды в емкостном водонагревателе $T_{\rm sp}.$

Нормативные показатели

- $T_{sp} = 60 \text{ °C} \rightarrow 1.0 \times N_L$
- $\blacksquare \ T_{sp} = 55 \ ^{\circ}C \rightarrow 0.75 \times N_L$
- \blacksquare T_{sp} = 50 °C \rightarrow 0,55 × N_L
- T_{sp} = 45 °C \rightarrow 0,3 × N_L

Кратковременная производительность (10-минутная)

отнесенная к коэффициенту мощности N_L при подогреве воды в контуре водоразбора ГВС с 10 до 45 °C

Объем	л	130	160	200
Кратковременная производ	ительность (л/			
10 мин.)				
при температуре подачи гр	еющего контура			
90 °C		159	199	246
80 °C		159	199	246
70 °C		148	173	210

Максимальный расход воды (10-минутный)

относительно коэффициента мощности N_{L}

с догревом,

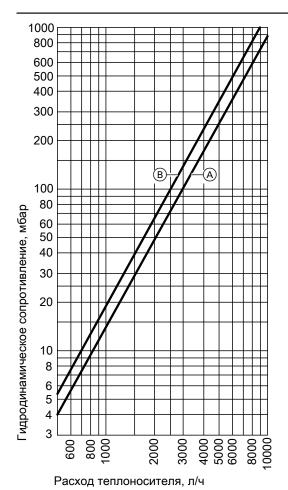
при подогреве воды в контуре водоразбора ГВС с 10 до 45 $^{\circ}$ С

Объем	Л	130	160	200
Максимальный расход воды (л/мин)				
при температуре подачи греющего контура				
90 °C		16	20	24
80 °C		16	20	24
70 °C		15	17	21

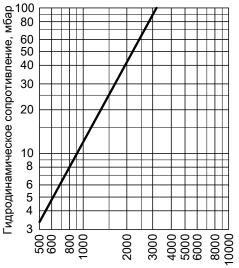
Возможный расход воды

объем водонагревателя нагрет до 60 °C,

без догрева


Объем	л	130	160	200
Норма водоразбора	л/мин	10	10	10
Возможный расход воды	Л	100	145	180
вода при t = 60 °C (пост.)				

Время нагрева


Приведенные периоды нагрева достигаются только в случае, если при соответствующей температуре подачи и нагреве контура водоразбора ГВС с 10 до 60 °С обеспечена максимальная долговременная мощность емкостного водонагревателя.

Объем	л	130	160	200
Период нагрева (мин)				
при температуре подачи грею	щего контура			
90 °C		20	19	18
80 °C		25	26	25
70 °C		34	34	32

Гидродинамическое сопротивление на стороне греющего контура

Гидродинамическое сопротивление на стороне контура водоразбора ГВС

Расх. в конт.водоразб. ГВС, л/ч

- Водонагреватель объемом 130 л
- (в) Водонагреватель объемом 160 и 200 л

Состояние при поставке

Vitocell 100-H, тип СНА Объем 130, 160 и 200 литров

Стальной емкостный водонагреватель с внутренним эмалевым покрытием "Ceraprotect".

- Встроенный магниевый электрод пассивной катодной защиты
- Установленная теплоизоляция из жесткого пенополиуретана
- Встроенная погружная гильза для датчика температуры емкостного водонагревателя или термостатного регулятора
- Ввинченные регулируемые опоры

Цвет эпоксидного покрытия листовой обшивки - серебристый.

4.5 Технические данные Vitocell 300-H, тип ЕНА

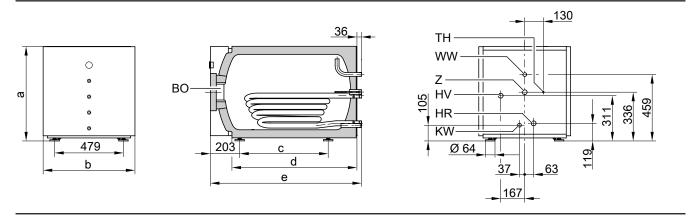
Для приготовления горячей воды в сочетании с водогрейными котлами, системами централизованного отопления и низкотемпературными системами отопления

Предназначен для установок с

- температурой подачи греющего контура до 200 °C
- рабочим давлением греющего контура до 25 бар или избыточным давлением насыщенного пара, равным 1 бар
- рабочим давлением в контуре ГВС до 10 бар

Объем водонагревателя		Л	160	200	350	500
Регистрационный номер по D	IN			0081/08	-10 MC	
Попторромонной монности		кВт	32	41	80	97
при нагреве воды в контуре	90 °C	л/ч	786	1007	1966	2383
ГВС с 10 до 45 °С и темпера-		кВт	28	30	64	76
туре подачи греющего кон-	80 °C	л/ч	688	737	1573	1867
тура при приведенном		кВт	20	23	47	55
ниже расходе теплоносителя	70 °C	л/ч	490	565	1155	1351
_	05.00	кВт	17	19	40	46
	65 °C	л/ч	417	467	983	1130
_	00.00	кВт	14	16	33	38
	60 °C	л/ч	344	393	811	934
Долговременная мощность	00.00	кВт	28	33	70	82
при нагреве воды в контуре	90 °C	л/ч	482	568	1204	1410
ГВС с 10 ло 60 °С и темпера-		кВт	23	25	51	62
туре подачи греющего кон-	80 °C	л/ч	396	430	877	1066
тура при приведенном		кВт	15	17	34	39
ниже расходе теплоносителя	70 °C	л/ч	258	292	585	671
Расход теплоносителя		м ³ /ч	3,0	5,0	5,0	5,0
при указанной долговременной	мошно-		-,-	-,-	5,5	-,-
сти						
Попгорременная мошность		кВт	_	_	83	83
при нагреве воды в контуре	0,5 бар	л/ч			2039	2039
ГВС с 10 до 45 °С и давлении		кВт	_	_	105	105
HACEIIII AHHOFO HANA HOM		л/ч			2580	2580
максимальной скорости пара	1,0 бар					
50 м/с						
Затраты тепла на поддержани	ие	кВтч/24 ч	1,20	1,30	1,90	2,30
готовности q _{гот} при разности те				·		
тур 45 К (значения, измеренные						
согласно DIN 4753-8)						
Габаритные размеры						
Общая длина		мм	1072	1236	1590	1654
Общая ширина		ММ	640	640	830	910
Ширина без обшивки		MM	_	_	768	810
Общая высота		MM	654	654	786	886
Macca		КГ	76	84	172	191
Емкостный водонагреватель с т	геплои-					
золяцией						
Объем теплоносителя		Л	7	8	13	16
Поверхность нагрева		M ²	0,87	0,9	1,7	2,1
Подключения				,	,	
Подающая и обратная маги-		R	1	1	11/4	11/4
страль греющего контура			•		.,,	.,,
Холодная вода и горячая		R	3/4	3/4	11/4	11/4
and the second process of the second process				′~	.,,,	.,,
вода		I		I		

Указание по ширине без обшивки (350 и 500 л)


350 л: При затруднениях с подачей водонагревателя на место установки можно снять переднюю панель с термометром и боковые панели, отвинтить регулируемые опоры и при подаче повернуть емкостный водонагреватель набок

500 л: При затруднениях с подачей водонагревателя на место установки ширину емкостного водонагревателя можно уменьшить до указанной в этой таблице ширины посредством демонтажа облицовки.

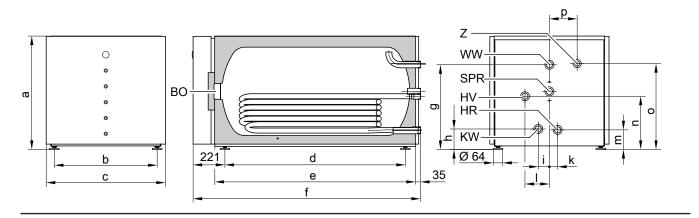
Указание по долговременной мощности

При проектировании установки с указанной или рассчитанной долговременной мощностью следует предусмотреть соответствующий насос. Указанная долговременная мощность достигается только в том случае, если номинальная тепловая мощность водогрейного котла ≥ долговременной мощности.

Vitocell 300-H объемом 160 - 200 л

- ВО Отверстие для визуального контроля и чистки
- HR Обратная магистраль греющего контура
- HV Подающая магистраль греющего контура
- KW Холодная вода

ТН Погружная гильза для датчика температуры водонагревателя или терморегулятора


WW Горячая вода

Z Циркуляционная линия

гаолица размеров			
Объем водонагрева-	л	160	200
теля			
a	MM	654	654
b	MM	640	640

Объем водонагрева-	л	160	200
теля			
С	MM	616	780
d	MM	866	1030
e	ММ	1072	1236

Vitocell 300-Н объемом 350 и 500 л

- ВО Отверстие для визуального контроля и чистки
- HR Обратная магистраль греющего контура
- HV Подающая магистраль греющего контура
- KW Холодная вода

- SPR Патрубок R 1 с переходной муфтой на R ½ для датчика температуры водонагревателя или термрегулятора
- WW Горячая вода
- Z Циркуляционная линия

Таблица размеров

Объем водонагрева-350 500 теля 786 886 а MM 795 b ММ 716 910 830 С ММ d MM 1256 1320 1397 1461 е MM 1590 1654 MM 636 586 g MM h ММ 367 409 78 MM 78 72 k 57 MM MM 170 203 133 137 m MM n MM 139 138 594 677 0 MM 193 226 MM р

Указание

Для монтажа погружной гильзы и датчика температуры емкостного водонагревателя должно быть предусмотрено минимальное расстояние между стеной и задней стенкой емкостного водонагревателя, равное 450 мм.

Коэффициент мощности N_L

согласно DIN 4708

Температура запаса воды в емкостном водонагревателе $T_{вод}$ = температура холодной воды на входе + 50 K $^{+5}$ K/-0 K

Объем водонагревателя	л	160	200	350	500
Коэффициент мощности N _L					
при температуре подачи греющего кон-					
тура					
90 °C		2,3	6,6	12,0	23,5
80 °C		2,2	5,0	12,0	21,5
70 °C		1,8	3,4	10,5	19,0

Указания по коэффициенту мощности N_L

Коэффициент мощности $N_{\rm L}$ изменяется в зависимости от температуры запаса воды в емкостном водонагревателе $T_{\rm sod}$.

Нормативные показатели

- $T_{eo\partial} = 60 \text{ °C} \rightarrow 1.0 \times N_L$
- $T_{eod} = 55 \, ^{\circ}C \rightarrow 0.75 \times N_{L}$
- $T_{\text{eod}} = 50 \text{ °C} \rightarrow 0.55 \times N_L$
- \blacksquare $T_{eo\partial}$ = 45 °C \rightarrow 0,3 × N_L

Кратковременная производительность (10-минутная)

При коэффициенте мощности N_L

при нагреве воды в контуре ГВС с 10 до 45 °C

Объем водонагревателя	Л	160	200	350	500
Кратковременная производительность (л/10 мин)					
при температуре подачи греющего кон-					
тура					
90 °C		203	335	455	660
80 °C		199	290	445	627
70 °C		182	240	424	583

Максимальный расход воды (10-минутный)

При коэффициенте мощности N_L

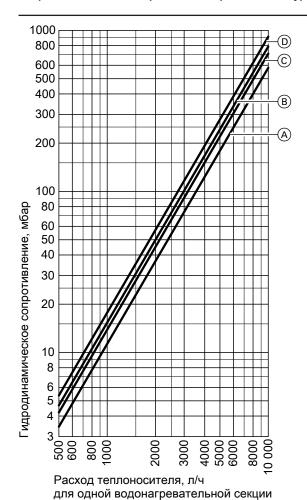
с догревом

Нагрев воды в контуре ГВС с 10 до 45 °C

Объем водонагревателя	Л	160	200	350	500
Макс. расход воды (л/мин)					
при температуре подачи греющего кон-					
_О тура					
.0 0 °C		20	33	45	66
4 80 °C		20	29	45	62
⁷ 70 °C		18	24	42	58
			,		
22					

Возможный расход воды

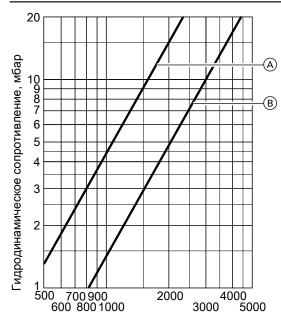
Объем водонагревателя нагрет до 60 °C Без догрева


Объем водонагревателя	л	160	200	350	500
Норма водоразбора	л/мин	10	10	15	15
Возможный расход воды	л	150	185	315	440
Вода при t = 60 °C (пост.)					

Период нагрева

Приведенные периоды нагрева достигаются только в случае, если при соответствующей температуре подачи и нагреве воды в контуре ГВС с 10 до 60 °С обеспечена максимальная долговременная мощность емкостного водонагревателя.

Объем водонагревателя	л	160	200	350	500
Период нагрева (мин)					
при температуре подачи греющего кон-					
тура					
90 °C		19	18	15	20
80 °C		26	25	20	26
70 °C		34	32	31	40


Гидродинамическое сопротивление греющего контура

- Водонагреватель объемом 160 л
- В Водонагреватель объемом 200 л

- © Водонагреватель объемом 350 л
- Водонагреватель объемом 500 л

Гидродинамическое сопротивление в контуре ГВС

Расх. воды в контуре водоразб. ГВС, л/ч для одной водонагревательной секции

- Водонагреватель объемом 160 и 200 л
- Водонагреватель объемом 350 и 500 л

Состояние при поставке

Vitocell 300-H, тип ЕНА, объемом 160 и 200 л

Емкостный водонагреватель из высоколегированной нержавеющей стали.

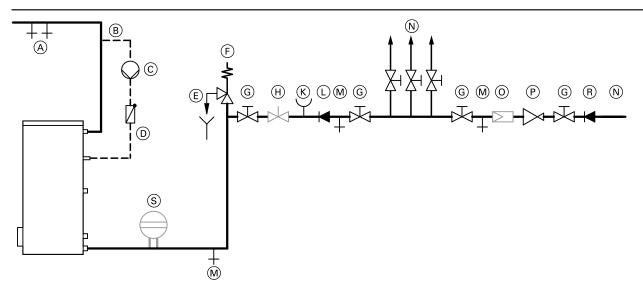
- установленная теплоизоляция из жесткого пенополиуретана
- Встроенная погружная гильза для датчика температуры водонагревателя или терморегулятора
- встроенный термометр и
- ввинченные регулируемые опоры

Цвет эпоксидного покрытия листовой облицовки - серебристый

Vitocell 300-H, тип EHA, объемом 350 и 500 л

Емкостный водонагреватель из высоколегированной нержавеющей стали.

- с установленной теплоизоляцией из жесткого полиуретана
- присоединительный патрубок для датчика температуры водонагревателя или терморегулятора
- встроенный термометр и
- ввинченные регулируемые опоры.


Отдельно упакованы и закреплены на упаковке:

- переходная муфта R 1 × ½
- погружная гильза и
- теплоизолирующая деталь для погружной гильзы

Цвет эпоксидного покрытия листовой облицовки - серебристый.

4.6 Подключения емкостного водонагревателя в контуре ГВС

Подключение по DIN 1988

Пример: Vitocell 100-V

- А Трубопровод горячей воды
- В Циркуляционный трубопровод
- © Циркуляционный насос
- Подпружиненный обратный клапан
- Выпускная линия с контролируемым выходным отверстием
- (F) Предохранительный клапан
- (G) Запорный вентиль
- (н) Регулятор расхода

G

424

5829

(Рекомендация: монтаж и настройка максимального расхода воды должны соответствовать 10-минутной производительности емкостного водонагревателя.)

Необходим монтаж предохранительного клапана.

- К Подключение манометра
- Обратный клапан
- М Линия опорожения
- N Трубопровод холодной воды
- Водяной фильтр контура ГВС*10
- Редукционный клапан согласно DIN 1988-2, издание от декабря 1988 г.
- ® Обратный клапан/разделитель трубопроводов
- Мембранный расширительный бак, предназначенный для контура ГВС

Рекомендация: установить предохранительный клапан выше верхней кромки емкостного водонагревателя. За счет этого обеспечивается защита от загрязнения, образования накипи и высоких температур. При работах на предохранительном клапане опорожнение емкостного водонагревателя не требуется.

*10 Согласно DIN 1988-2 в установках с металлическими трубопроводами должен быть установлен водяной фильтр в контуре водоразбора ГВС. При использовании полимерных трубопроводов согласно DIN 1988 и нашим рекомендациям также следует установить водяной фильтр в контуре водоразбора ГВС, чтобы предотвратить попадание грязи в систему хозяйственнопитьевого водоснабжения.

Принадлежности для монтажа

5.1 Технические данные

Принадлежности для соединения емкостного водонагревателя с водогрейным котлом

Системные межсоединения с Vitocell

В комплект входят:

- соединительные трубопроводы
- насос, со смонтированными кабельными подключениями
- обратный клапан

Номера заказов для соответствующих типов емкостных водонагревателей см. в прайс-листе.

Блок предохранительных устройств по DIN 1988

Элементы:

- запорный вентиль
- обратный клапан и контрольный штуцер
- штуцер для подключения манометра
- мембранный предохранительный клапан

Объем водонагревателя до 200 л

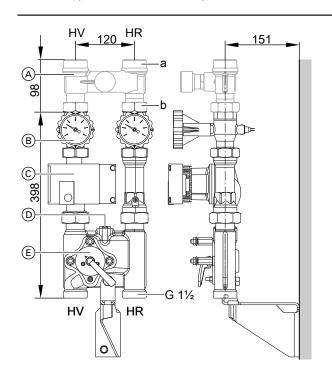
- 10 бар: **№ заказа 7219 722**
- DN 15/R 3/4
- Макс. мощность нагрева: 75 кВт

Объем водонагревателя свыше 300 л

- 10 бар: № заказа 7180 662
- DN 20/R 1
- Макс. мощность нагрева: 150 кВт

Принадлежности для отопительных контуров

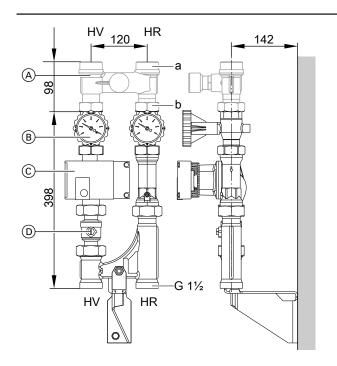
Насосные группы отопительных контуров Divicon


Конструкция и функционирование

- Поставляется с размерами соединений R ¾ , R 1 и R 1¼ .
- С насосом отопительного контура, обратным клапаном, шаровыми кранами со встроенными термометрами и 3-ходовым смесителем или без смесителя.
- Быстрота и легкость монтажа благодаря предварительно установленному модулю и компактной конструкции.
- Низкие потери при излучении благодаря геометрически замкнутым теплоизоляционным оболочкам.
- Низкие затраты на электроэнегргию и точное регулирование благодаря использованию высокопроизводительных насосов и оптимизированной характеристике смесителя.
- Возможность приобретения со ступенчатыми насосами.
- Байпасный клапан, приобретаемый в качестве принадлежности для гидравлической компенсации отопительной установки, применяется в качестве ввертной детали в подготовленное отверстие в чугунном корпусе.

- При использовании ступенчатых насосов может быть необходим перепускной клапан для предотвращения шумов в отопительной установке. Он устанавливается на регуляторе Divicon.
- Прямое подключение к водогрейному котлу благодаря трубному узлу (отдельный монтаж) или настенный монтаж как отдельно, так и с двойным или тройным распределительным коллектором.
- Возможность приобретения в качестве отдельного комплекта. Более подробную информацию см. в прайс-листе Viessmann.

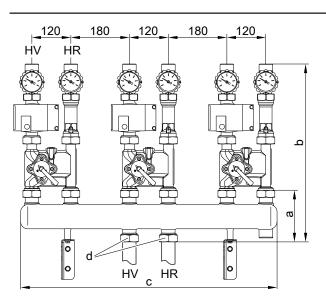
№ заказа в сочетании с различными насосами см. в прайс-листе Viessmann.


Насосная группа отопительного контура со смесителем или без него имеет одинаковые размеры.

Подключение контуров	R	3/4	1	11/4
отопления				
Объемный расход (макс.)	м ³ /ч	1,0	1,5	2,5
а (внутр.)	Rp	3/4	1	11/4
а (наружный)	G	11/4	11/2	2
b (внутр.)	Rp	3/4	1	11/4
b (наружный)	G	11/4	11/4	2

Divicon со смесителем (настенный монтаж, изображен без теплоизоляции и без комплекта привода смесителя)

- HR Обратная магистраль отопительного контура
- HV Подающая магистраль отопительного контура
- Перепускной клапан (принадлежность для ступенчатого) насоса)
- Шаровые краны с термометром
- © Насос
 © Байпасный клапан (принадлежность)
- 3-ходовой смеситель

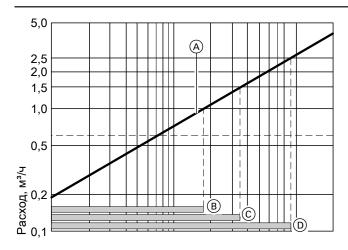


Подключение контуров	R	3/4	1	11/4
отопления				
Объемный расход (макс.)	м ³ /ч	1,0	1,5	2,5
а (внутр.)	Rp	3/4	1	11/4
а (наружный)	G	11/4	1½	2
b (внутр.)	Rp	3/4	1	11/4
b (наружный)	G	11/4	11/4	2

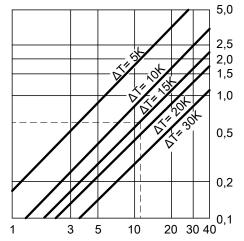
Divicon без смесителя (настенный монтаж, изображен без теплоизоляции)

- HR Обратная магистраль отопительного контура
- HV Подающая магистраль отопительного контура
- Перепускной клапан (принадлежность для ступенчатого насоса)
- В Шаровые краны с термометром
- © Hacoc
- Шаровой кран

Пример монтажа: Насосны группы отопительного контура Divicon с распределительным коллектором для 3-х насосных групп



Размер	Распределительный коллектор с подключением к				
	отопительному контуру				
	R ¾ и R 1	R 11/4			
а	135	183			
b	535	583			
С	784	784			
d	G 11/4	G 2			


(изображен без теплоизоляции)

- HR Обратная магистраль отопительного контура
- HV Подающая магистраль отопительного контура

Определение необходимого диаметра

Характеристика регулирования смесителя

Тепловая мощность отоп. контура кВт

- (A) Divicon с 3-ходовым смесителем
 В указанных рабочих диапазонах (В) (D) воздействие смесителя Divicon является оптимальным:
- В Divicon с 3-ходовым смесителем (R ¾) Область применения: 0 - 1,0 м³/ч

Пример:

Отопительный радиаторный контур с тепловой мощностью Ö = 11.6 кВт

Температура системы отопления 75/60 °C ($\Delta T = 15 \text{ K}$)

- с Удельная теплоемкость
- т Массовый расход
- **Q** Тепловая мощность
- У Объемный расход

- © Divicon с 3-ходовым смесителем (R 1) Область применения: 0 - 1,5 м³/ч
- © Divicon с 3-ходовым смесителем (R 11/4) Область применения: 0 - 2,5 м³/ч

$$\dot{Q} = \dot{m} + c \cdot \Delta T \qquad c = 1,163 \quad \frac{B_T \; \text{ч}}{\kappa r \cdot K} \qquad \dot{m} \; \triangleq \dot{V} \; \left(1 \; \kappa r \approx 1 \; \text{дм}^3\right)$$

$$\dot{V} = \frac{\dot{Q}}{c \cdot \Delta T} = \frac{11600 \text{ BT} \cdot \text{kr} \cdot \text{K}}{1,163 \text{ BT4} \cdot (75\text{-}60) \text{ K}} = 665 \frac{\text{kr}}{h} \triangleq 0,665 \frac{\text{m}^3}{h}$$

Исходя из величины \dot{V} , выбрать наименьший смеситель в пределах рабочего диапазона.

Результат примера: Divicon с 3-ходовым смесителем (R ¾)

Кривые насосов и гидродинамическое сопротивление отопительного контура

Остаточный напор насоса определяется разностью выбранной кривой насоса и кривой сопротивления соответствующей насосной группы, а также, при необходимости, других компонентов (трубного узла, распределителя и т.д.).

На нижеследующих диаграммах работы насосов отображены кривые сопротивления различных насосных групп Divicon.

Максимальный расход для Divicon:

- c R $\frac{3}{4}$ = 1,0 $\frac{M^3}{4}$
- c R 1 = 1,5 $M^3/4$
- c R $1\frac{1}{4}$ = 2,5 $\frac{1}{4}$ = 4

Пример:

Объемный расход $\dot{V} = 0.665 \text{ м}^3/\text{ч}$

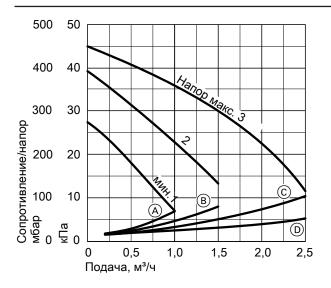
Выбрано:

Divicon со смесителем R $^3\!\!\!/$ и насосом Wilo VIRS 25/4-3, кривая насоса 2, подача 0,7 м $^3\!\!\!/$ ч

Величина напора согласно кри-

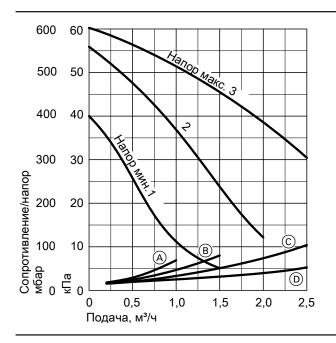
 вой насоса:
 28 кПа

 Сопротивление Divicon:
 3,5 кПа

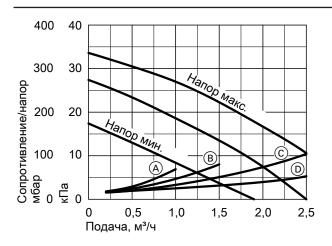

Остаточный напор: 28 кПа - 3,5 кПа = 24,5 кПа.

Указание

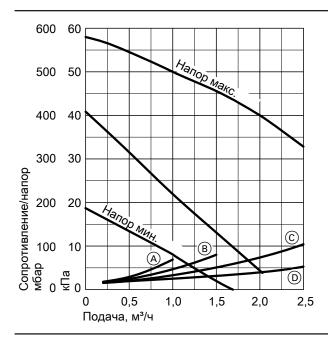
Для других элементов (трубного узла, распределителя и т.д.) также необходимо определить сопротивление и вычесть его из остаточного напора.


Ступенчатые насосы отопительного контура

Wilo VIRS 25/4-3


- A Divicon R ¾ со смесителем
- B Divicon R 1 со смесителем
- © Divicon R 1¼ со смесителем
- Divicon R ¾, R 1 и R 1¼ без смесителя

Wilo VIRS 25/6-3


- A Divicon R ¾ со смесителем
- В Divicon R 1 со смесителем
- © Divicon R 1¼ со смесителем
- Divicon R ¾, R 1 и R 1¼ без смесителя

Grundfos VIUPS 25-40

- (A) Divicon R ¾ со смесителем
- B Divicon R 1 со смесителем
- © Divicon R 1¼ со смесителем
- D Divicon R ¾, R 1 и R 1¼ без смесителя

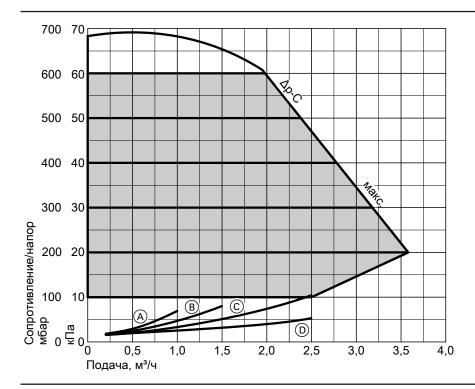
Grundfos VIUPS 25-60

- A) Divicon R ¾ со смесителем
- B Divicon R 1 со смесителем
- © Divicon R 1¼ со смесителем
- Divicon R ¾, R 1 и R 1¼ без смесителя

Насосы отопительного контура с регулировкой по разности давления

Согласно Положению об экономии энергии параметры насосов в системах центрального отопления должны определяться в соответствии с техническими правилами. Оборудование или характеристики насосов в отопительных установках с номинальной тепловой мощностью свыше 25 кВт должны обеспечивать автоматическое согласование электрической потребляемой мощности с требующейся в данном режиме подачей минимум по 3 ступеням, если это не противоречит требованиям техники безопасности теплогенератора.

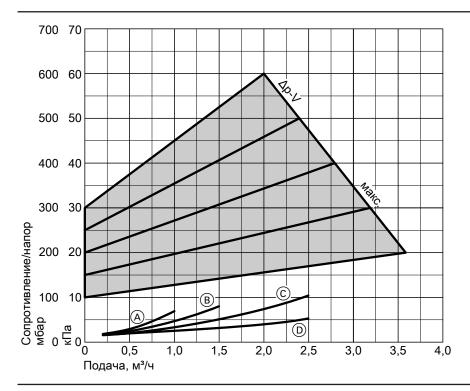
В дополнение к Положению об экономии энергии при меньшей мощности также рекомендуется использовать насосы с регулировкой напора.


Указание по проектированию

Использование насосов отопительного контура с регулировкой по разности давления предполагает наличие отопительных контуров с переменным расходом, например, одно- и двухтрубных систем отопления с терморегулирующими вентилями, систем внутрипольного отопления с терморегулирующими или зонными вентилями.

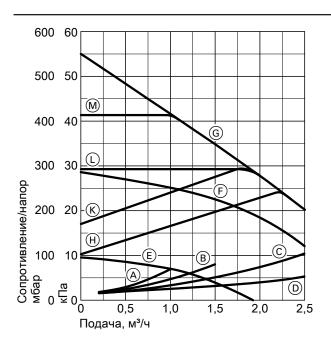
Wilo Stratos Para 25/1-7

■ Энергоэффективный насос с повышенными энергосберегающими характеристиками (соответствуют классу энергопотребления А)


Режим работы: постоянный перепад давления

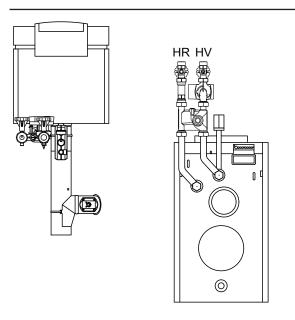
- A Divicon R ¾ со смесителем
- Divicon R 1 со смесителем

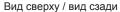
- © Divicon R 11/4 со смесителем
- Divicon R ¾, R 1 и R 1¼ без смесителя


Режим работы: переменный перепад давления

- A Divicon R ¾ со смесителем
- Divicon R 1 со смесителем

Grundfos Alpha 2-60

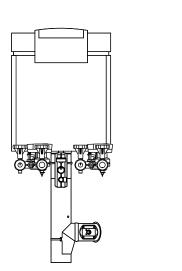

- энергоэффективный насос с повышенными энергосберегающими характеристиками (соответствуют классу энергопотребления А)
- с индикацией потребляемой мощности на дисплее
- с функцией автоматической адаптации (автоматическая настройка в соответствии с системой трубопроводов)
- с функцией снижения температуры в ночное время

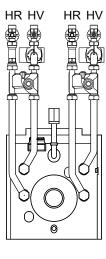


- © Divicon R 11/4 со смесителем
- Divicon R ¾, R 1 и R 1¼ без смесителя
- Divicon R 1¼ со смесителем
- (D) Divicon R ¾, R 1 и R 1¼ без смесителя
- Ступень 1
- Ступень 2
- Ступень 3
- Мин. пропорциональное давление
- Макс. пропорциональное давление
- Ū Мин. постоянное давление
- Макс. постоянное давление

- Divicon R ¾ со смесителем
- (B) Divicon R 1 со смесителем

Пример монтажа котла Vitorond 100 (мощностью до 100 кВт) с одной насосной группой отопительного контура Divicon С одним трубным узлом





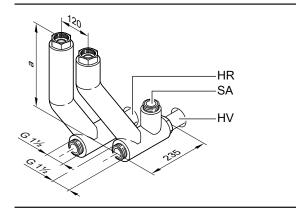
- HV Подающая магистраль греющего контура
- HR Обратная магистраль греющего контура

Пример монтажа котла Vitola 200 с двумя регуляторами отопительного контура Divicon

Подключение с 2 трубными узлами

Вид сверху / вид сзади

- HV Подающая магистраль отопительного контура
- HR Обратная магистраль отопительного контура

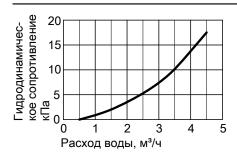

Трубный узел для монтажа на котле Vitorond 100

С установленной теплоизоляцией и патрубком для подключения группы безопасности.

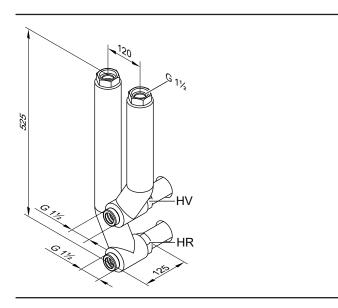
- © Vitorond 100, 15 33 кВт
 - № заказа 7147 863

5829

■ Vitorond 100, 40 - 63 кВт № заказа 7147 862


- HV Подающая магистраль отопительного контура
- HR Обратная магистраль отопительного контура
- SA Патрубок аварийной линии (группа безопасности)

Номинальная тег	пло- кВт	15 - 33	40 - 63
вая мощность			
Размер а	ММ	195	204


Указание

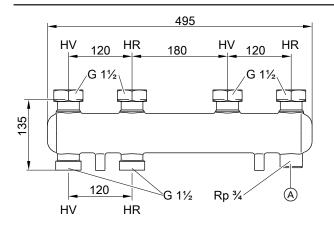
Если при использовании водогрейных котлов Vitorond 100 система приготовления горячей воды не подключается, то необходимо дополнительно заказать 2 заглушки (см. прайслист).

Гидродинамическое сопротивление

Трубный узел для монтажа на котле Vitola 200 В сборе со смонтированной теплоизоляцией. № заказа 7439 212

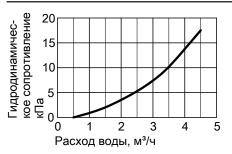
- HV Подающая магистраль отопительного контура
- HR Обратная магистраль отопительного контура

Распределительный коллектор


С теплоизоляцией

Настенный монтаж с использованием отдельно заказываемого настенного крепления.

Соединение между водогрейным котлом и распределительным коллектором должно быть выполнено силами заказчика.


Для 2 насосных групп Divicon

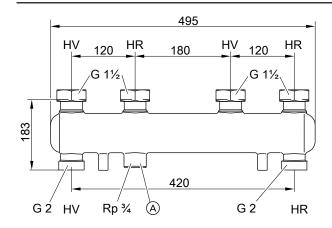
№ заказа 7460 638 для Divicon R ¾ и R 1

- Возможность подключения расширительного бака
- HV Подающая магистраль греющего контура
- HR Обратная магистраль греющего контура

Гидродинамическое сопротивление

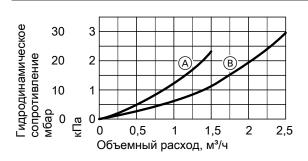
Байпасный клапан

№ заказа 7464 889

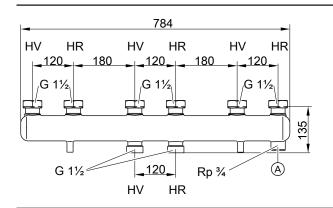

Для гидравлического согласования отопительного контура со смесителем. Ввинчивается в Divicon.

Перепускной клапан

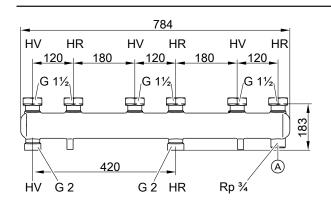
№ заказа 7429 738: R ¾
№ заказа 7429 739: R 1
№ заказа 7429 740: R 1¼


Только для ступенчатых насосов отопительного контура. Вкручивается в Divicon.

№ заказа 7466 337 для Divicon R 11/4


- (А) Возможность подключения расширительного бака
- HV Подающая магистраль греющего контура
- HR Обратная магистраль греющего контура

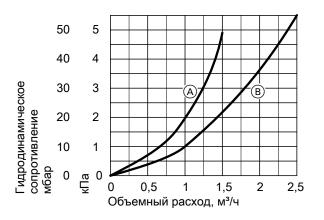
Гидродинамическое сопротивление


- А Распределительный коллектор для Divicon R ¾ и R 1
- B Распределительный коллектор для Divicon R 11/4

Для 3 насосных групп Divicon№ **заказа 7460 643** для Divicon R ¾ и R 1

- Возможность подключения расширительного бака
- HV Подающая магистраль греющего контура
- HR Обратная магистраль греющего контура

№ заказа 7466 340 для Divicon R 11/4

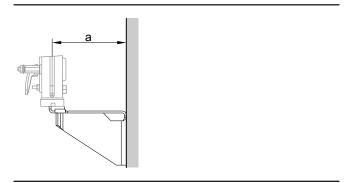


- Возможность подключения расширительного бака
- HV Подающая магистраль греющего контура
- HR Обратная магистраль греющего контура

Указание

Характеристические кривые всегда относятся только к одной паре патрубков (HV/HR).

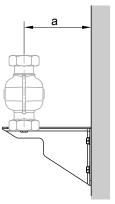
Гидродинамическое сопротивление


- А Распределительный коллектор для Divicon R ¾ и R 1
- B Распределительный коллектор для Divicon R 11/4

Указание

Характеристические кривые всегда относятся только к одной паре патрубков (HV/HR).

Настенное крепление № заказа 7465 894


для отдельных насосных групп Divicon C винтами и дюбелями.

для Divicon		со смесите-	без смеси-
		лем	теля
а	MM	151	142

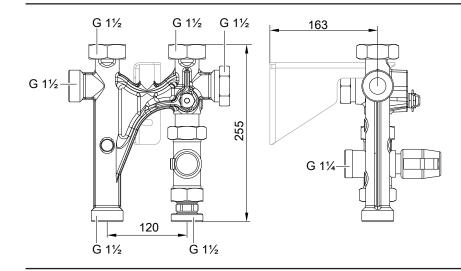
№ заказа 7465 439

для распределительного коллектора С винтами и дюбелями.

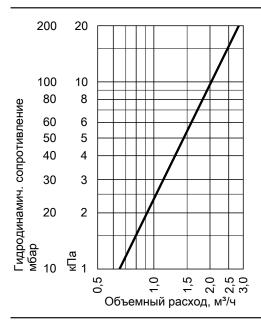
для Divi	icon	R ¾ и R 1	R 11/4
а	MM	142	167

Распределитель для поддержки отопления гелиоустановкой

№ заказа 7441 163

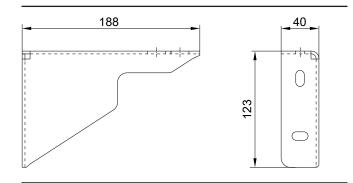

Объемный расход макс. 2,5 м³/ч

В комплекте с 3-ходовым переключающим клапаном, погружной гильзой для датчика температуры обратной магистрали и теплоизоляцией.


Для монтажа между водогрейным котлом и насосной группой отопительных контуров Divicon или распределительным коллектором насосной группы отопительных контуров Divicon.

Возможности подключения см. в указаниях по проектированию. Проставка для монтажа на стене и настенное крепление должны быть при необходимости заказаны отдельно.

Соединение между водогрейным котлом, буферной емкостью и распределителем должно быть выполнено монтажной фирмой.

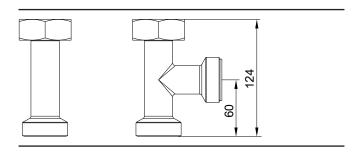

Гидродинамическое сопротивление

Настенное крепление для распределителя

№ заказа 7441 165

Для крепления распределителя на стене. С винтами и дюбелями.

Проставка для монтажа на стене

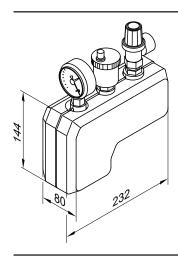

№ заказа 7441 445

С подключением для подающей или обратной магистрали греющего контура и теплоизоляцией.

Для монтажа под распределителем.

Подключения G 1½.

Возможности подключения см. в указаниях по проектированию. Проставка для монтажа на стене при необходимости должна быть заказана дополнительно к распределителю.


Принадлежности для водогрейных котлов

Группа безопасности

- с блоком предохранительных устройств
- с теплоизоляцией

№ заказа 7143 779 для 15 - 40 кВт

№ заказа 7143 780 для 50 и 63 кВт

- предохранительный клапан R ½ или R ¾ (давление срабатывания 3 бар)
- манометр
- автоматический воздухоотводчик с автоматическим запорным устройством
- с теплоизоляцией

Опорная рама для котла Vitola 200

■ Высота: 250 мм

№ заказа 7187 609 для 15 и 18 кВт

№ заказа 7187 610 для 22 - 33 кВт

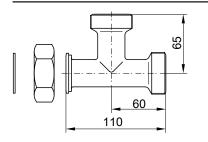
№ заказа 7517 415 для 40 - 63 кВт

Опорная рама для котла Vitorond 100

■ Высота: 250 мм

№ заказа 7196 529 для 18 кВт

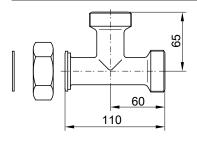
№ заказа 7196 530 для 22 кВт

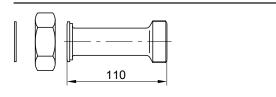

№ заказа 7196 531 для 27 и 33 кВт

Тройник

Тройники и резьбовые соединения для подключения 2 насосных групп отопительного контура Divicon или системных смесителей к котлам Vitorond 200.

№ заказа 7237 422

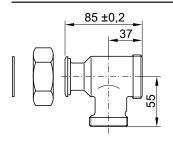

G 1½ x 1½ x 1½


Переходники

№ заказа 7205 625

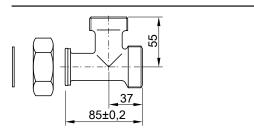
Тройник: G 1½ x 1½ x 1½

Проставка: G 11/2 х 11/2

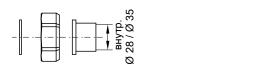


Тройники для подключения емкостных водонагревателей

Тройники и резьбовые соединения для подключения емкостных водонагревателей. Необходимы, если не заказываются межсоединения.

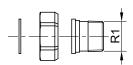

Тройник с обратным клапаном № заказа 7336 645

G 1½ x 1¼ x 1½


Тройник без обратного клапана № заказа 7336 644

G 1½ x 1¼ x 1½

Соединения резьба-пайка DN 28 и 35


Номера заказа см. в прайс-листе. G $1\frac{1}{2}$ x \oslash 28 мм или \oslash 35 мм

Резьбовое соединение R 1

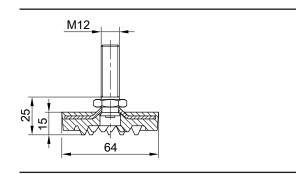
Номера заказа см. в прайс-листе.

G 1½ x R 1

Переходный элемент

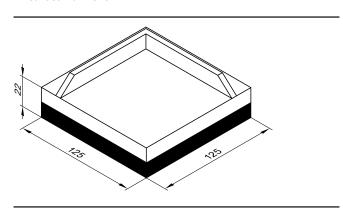
№ заказа 7517 579

G2 × 1½


Для подключения подающей и обратной магистрали к Vitorond 200 (40 - 100 кВт), если используется другое системное оборудование Viessmann (см. прайс-лист).

Звукопоглощающие регулируемые опоры и подкладки для котла

Звукопоглощающие регулируемые опоры и подкладки для котла весьма эффективно предотвращают распостранение корпусного шума. При использовании этих деталей трубопроводы следует снабдить трубными компенсаторами.


При расчете параметров таких оснований необходимо учитывать общий рабочий вес котловой установки. При использовании продольных звукопоглощающих скоб (звукопоглощающих подкладок котла) необходимо обеспечить ровную опорную поверхность. Эффективная изоляция от корпусного шума является особенно важной для крышных котельных.

Звукопоглощающие регулируемые опоры – допустимая нагрузка 1200 кг № заказа 7306 246

- для водогрейных котлов
- для водогрейных котлов с подставным емкостным водонагревателем Vitocell-H 100 и Vitocell-H 300 или для
- емкостных водонагревателей Vitocell-H 100 и Vitocell-H 300
- Ввинтить регулируемые опоры снизу в шины основания.
- допустимая нагрузка 1200 кг

Звукопоглощающие опоры котла № заказа 7017 819

Применяемость см. в прайс-листе

- состоит из алюминиевой опорной плиты и соединенной с ней резиновой подвеской из маслостойкого пербунана.
- допустимая нагрузка 1200 кг

Указания по проектированию

6.1 Водогрейный котел

Выбор номинальной тепловой нагрузки

Выбрать водогрейный котел согласно требуемому теплопотреблению, включая приготовление горячей воды.

5829 424 GUS

В случае с низкотемпературными котлами, конденсационными котлами и многокотловыми установками тепловая мощность может оказаться больше расчетного теплопотребления здания.

КПД низкотемпературных котлов стабилен в широком диапазоне нагрузок котла; КПД остается практически неизменным даже при теплопроизводительности в два раза большей, чем того требует теплопотребление.

Топливо

Допускаются все сорта жидкого топлива EL по DIN 51603-1 EL Standard и DIN 51603-EL-1 с низким содержанием серы. Не допускается использование улучшающих горение жидкотопливных присадок, не сгорающих без остатка.

Жидкое топливо DIN 51603-6 EL A Bio 10: допускается использование жидкого топлива EL с низким содержанием серы с добавлением до 10 % биокомпонентов (FAME) согласно проекту DIN 51603-6.

Монтаж соответствующей горелки

Горелка должна соответствовать номинальной тепловой мощности и аэродинамическому сопротивлению водогрейного котла (см. технические данные изготовителя горелки).

Материал пламенной головы горелки должен выдерживать рабочие температуры не менее 500 °C.

Жидкотопливная вентиляторная горелка

Горелка должна пройти испытания и иметь маркировку согласно EN 267.

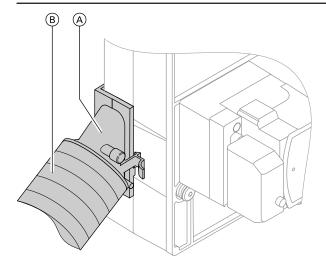
Газовая вентиляторная горелка

Горелка должна быть испытана согласно EN 676 и иметь маркировку СЕ согласно Директиве 90/396/EЭC.

Настройка горелки

Отрегулировать расход газа или жидкого топлива в соответствии с указанной номинальной тепловой мощностью водогрейного котла.

Исполнение с горелкой Vitoflame 200 – для режима эксплуатации с отбором воздуха для горения извне (кроме Vitorond 100)


Воздух для горения подается непосредственно к горелке. Отверстие для приточного воздуха в помещении отопительной установки не требуется, так как это помещение согласно EnEV может быть выполнено воздухонепроницаемым. Предотвращается постоянное выхолаживание помещения для установки. Должны быть выполнены требования норм EN 15035 (pr DIN EN 15035:2005), в особенности применительно к герметичности контура сжигания топлива.

При этом должны быть учтены следующие требования:

- приточный воздуховод: Ø 80 мм (принадлежность)
- макс. длина приточного воздуховода от задней кромки водогрейного котла: 14 м
- макс. количество колен под 90°: 4 шт.
- макс. потери давления: 35 Па
- Температура воздуха для сжигания топлива на горелке: мин.: 5 °С/макс. 30 °С

Если потребуется, скорректировать содержание ${\rm CO_2}$ (см. инструкцию по сервисному обслуживанию горелки).

Использование регулятора тяги (например, Vitoair) в режиме эксплуатации с отбором воздуха для горения извне и в помещении для установки без отверстия для приточного воздуха.

Подключение шланга приточного воздуха (B) с воздухозаборным патрубком (A) в режиме эксплуатации с отбором воздуха для горения извне

6.2 Установка и монтаж

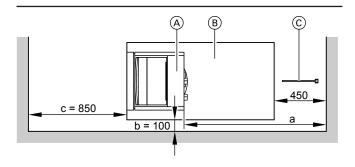
Условия монтажа

Необходимо выполнить следующие требования к помещению для установки:

- Не допускается загрязнение воздуха галогенсодержащими углеводородами (например, входящими в состав аэрозолей, красок, растворителей и моющих средств).
- Избегать сильной степени запыления.
- Не допускать высокой влажности воздуха.
- Обеспечить защиту от замерзания и надлежащую вентиляцию. При несоблюдении этих требований возможны сбои и повреждения установки.

Это в особенности относится к парикмахерским, типографиям, химчисткам, лабораториям и т.п.

При несоблюдении данных указаний право на гарантийное обслуживание в случае повреждений прибора, обусловленных одной из указанных причин, теряет силу.


Расстояние до топливного бака

В данной отопительной установке не превышается максимальная температура поверхности 40 °C.

Поэтому достаточно минимальное расстояние 0,1 м между отопительной установкой и топливным баком.

Минимальные расстояния для котла Vitorond 100

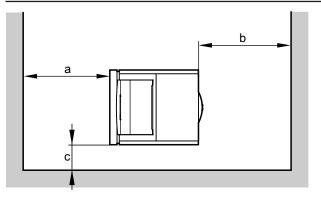
18 - 33 кВт

- Водогрейный котел
- В Емкостный водонагреватель
- © Погружная гильза емкостного водонагревателя (только при объеме 350 л)

Раз- Учесть конструктивную длину Vitoair и предоставляемые

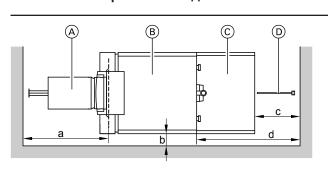
мер а: заказчиком трубы дымохода.

Раз- Если водогрейный котел комплектуется **газовой горел**мер b: **кой Vitoflame 200**, то рядом с котлом со стороны, где


кой Vitoflame 200, то рядом с котлом со стороны, где будет монтироваться комбинированная газовая арматура, необходимо предусмотреть расстояние до стены не менее 500 мм для проведения работ по регулировке

и сервисному обслуживанию.

Раз- Расстояние, требуемое для работ по очистке.


мер с:

40 - 100 кВт

Номинальная тепловая мощ- ность	кВт	40	50	63	80	100		
a*11	MM	850	850	850	1100	1100		
b	MM	Учесть конструктивную длину регуля- тора тяги Vitoair						
c*12	MM	100	100	100	100	100		

Минимальные расстояния для котла Vitola 200

- © Емкостный водонагреватель
- Погружная гильза емкостного водонагревателя (только при объеме 350 л)

- А Камера сгорания
- В Водогрейный котел

Ном	инальная тепловая мощность	кВт	15	18	22	27	33	40	50	63
а	для типа VB2A	MM	500	500	550	630	740	850	920	1090
b		MM	100	100	100	100	100	100	100	100
С		MM	_	_	_	450	450	450	450	_
d		Учесть конструктивную длину комбинированного регулятора тяги Vitoair								

Раз- Данное расстояние перед водогрейным котлом необхо-

мер а: димо для демонтажа камеры сгорания.

Размер b: Если водогрейный котел комплектуется газовой горелмер b: кой Vitoflame 200, то рядом с котлом со стороны, где
будет монтироваться комбинированная газовая арматура, необходимо предусмотреть расстояние до стены

не менее 500 мм для проведения работ по регулировке

и сервисному обслуживанию.

- *11 Расстояние, требуемое для работ по очистке.
- *12 Если водогрейный котел комплектуется **газовой горелкой Vitoflame 200**, то рядом с котлом со стороны, где будет монтироваться комбинированная газовая арматура, необходимо предусмотреть **расстояние до стены не менее 500 мм** для проведения работ по регулировке и сервисному обслуживанию.

G

5829

6.3 Гидравлическая обвязка

Расчет параметров установки

Температура котловой воды не превышает 95 °C. С помощью перенастройки терморегулятора можно повысить температуру котловой воды и, тем самым, температуру подающей магистрали.

Чтобы снизить до минимума потери на распределение, мы рекомендуем настроить теплораспределительное устройство и систему приготовления горячей воды на температуру подачи не выше 70 $^{\circ}$ C.

Предохранительные устройства

Согласно EN 12828 водогрейные котлы для систем водяного отопления с температурой срабатывания защитного ограничителя температуры до 110 °C и согласно их сертификата соответствия должны быть оснащены предохранительным клапаном, прошедшим типовые испытания.

В соответствии с TRD 721 это должно быть обозначено следующей маркировкой:

- "Н" для допустимого избыточного давления до 3,0 бар и тепловой мощности не более 2700 кВт,
- "D/G/H" для всех других режимов эксплуатации.

Отопительные контуры

Для отопительных установок с пластиковыми трубами мы рекомендуем использовать диффузионно-непроницаемые трубы, чтобы предотвратить диффузию кислорода через стенки труб. В системах внутрипольного отопления с проницаемыми для кислорода пластиковыми трубами (DIN 4726) следует выполнить разделение отопительных систем на отдельные контуры. Для этого мы поставляем разделительные теплообменники.

Системы внутрипольного отопления и отопительные контуры с очень большим водонаполнением котлового блока даже при использовании низкотемпературных и особо низкотемпературных котлов должны быть подключены к водогрейному котлу через 4-ходовой смеситель; см. инструкцию по проектированию "Контроллер для внутрипольного отопления".

В подающую магистраль контура системы внутрипольного отопления следует встроить термостатный ограничитель максимальной температуры. Принять во внимание требования DIN 18560-2.

Полимерные трубопроводы для радиаторов

Для полимерных трубопроводов отопительных контуров с радиаторами мы рекомендуем также использовать термостатный ограничитель максимальной температуры.

Устройство контроля заполненности котлового блока водой

Согласно EN 12828 устройство контроля заполненности котлового блока водой для водогрейных котлов мощностью до 300 кВт можно не использовать, если исключен недопустимый перегрев при нехватке воды.

Котлы Vitola 200 фирмы Viessmann оборудованы прошедшими типовые испытания терморегуляторами и защитными ограничителями температуры.

Испытаниями доказано, что при недостаточном количестве воды, которое может иметь место вследствие утечки в отопительной установке при работающей горелке, выключение горелки происходит без каких-либо дополнительных действий оператора, предотвращая тем самым недопустимый перегрев водогрейного котла и системы удаления продуктов сгорания.

Качество воды в установке

Для водогрейных котлов с номинальной тепловой мощностью выше 50 кВт согласно VDI 2035-1 требуется умягчение котловой воды, если суммарное содержание щелочных земель превышает нормативное значение 2,0 моль/м³ (общая жесткость 11,2 °d), если количество заливаемой воды и воды для подпитки в течение срока службы в три раза превышает содержание воды в отопительной установке или удельный объем установки превышает 20 л/кВт.

Расширительный бак

Согласно EN 12828 системы водяного отопления должны оборудоваться мембранным расширительным баком.

Размер монтируемого расширительного бака зависит от параметров отопительной установки и должен быть обязательно проверен.

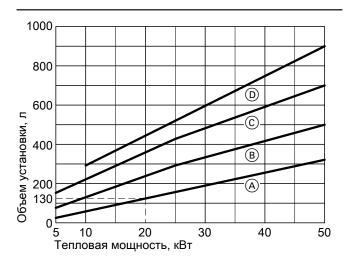
Проверка расширительного бака

При гидравлической стыковке котла с системой следует проверить соответствие параметров расширительного бака условиям эксплуатации установки.

Проверку на пригодность можно выполнить описанным ниже образом.

 V_{MAG} $= f ((V_A + V_K) A_f + 2,4)$

 V_{MAG} = объем расширительного бака

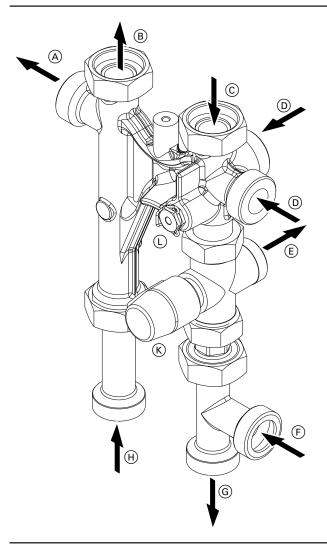

= коэффициент расширения (= 2 для расширитель-

ного бака)

 V_{A} = объем установки = объем котловой воды V_{K}

= коэффициент расширения теплоносителя

Определение объема отопительной установки (ориентировочные значения).


- (А) Конвекторы
- В Панельные радиаторы

- © Радиаторы
 Внутрипольное отопление

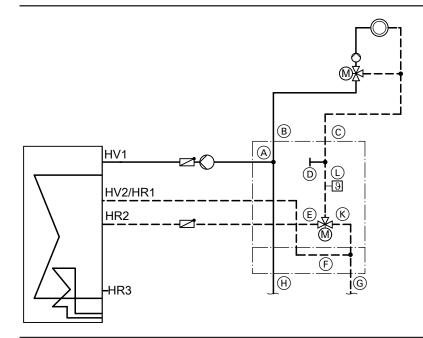
Определение коэффициента расширения A_f

Средн. темп. воды [°С]	Коэффициент расширения A _f
50	0,0121
60	0,0171
70	0,0228

6.4 Распределитель для поддержки отопления гелиоустановкой (принадлежность)

- © Обратная магистраль греющего контура для отопительного контура G 1½
- Обратная магистраль греющего контура для приготовления горячей воды G 1½ (по выбору)
- Обратная магистраль греющего контура к мультивалентной буферной емкости отопительного контура G 1¼
- (F) Обратная магистраль греющего контура от мультивалентной буферной емкости отопительного контура G 1¼ или
 - Обратная магистраль греющего контура для приготовления горячей воды
- Обратная магистраль греющего контура к водогрейному котлу G 1½
- Подающая магистраль греющего контура от водогрейного котла G 1½
- К) 3-ходовой переключающий клапан
- Подключение для датчика температуры обратной магистрали

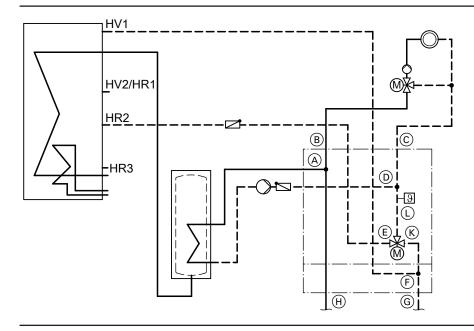
3-ходовым переключающим клапаном управляет модуль управления гелиоустановкой, тип SM1 или Vitosolic 200 (отдельная принадлежность).


Возможности подключения:

- Поддержка отопления гелиоустановкой с использованием мультивалентной буферной емкости отопительного контура или буферной емкости греющего контура
- Приготовление горячей воды водогрейным котлом в сочетании с мультивалентной буферной емкостью отопительного контура или буферной емкостью отопительного контура

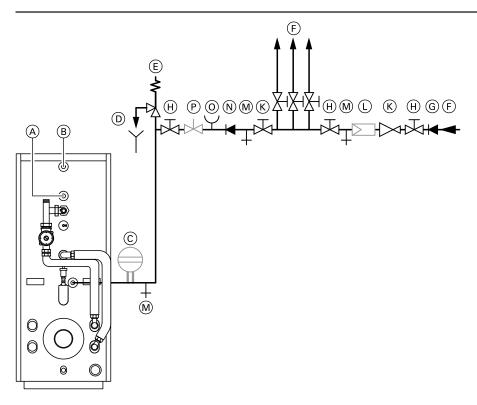
- Подающая магистраль греющего контура для приготовления горячей воды G $1\frac{1}{2}$
- В Подающая магистраль греющего контура для отопительного контура G 1½

Примеры установки


Приготовление горячей воды и поддержка отопления помещений с помощью мультивалентной буферной емкости отопительного контура

- Подающая магистраль греющего контура для приготовления горячей воды
- Подающая магистраль греющего контура для отопительного контура
- © Обратная магистраль греющего контура для отопительного контура
- Без подключения
- Обратная магистраль греющего контура к мультивалентной буферной емкости отопительного контура
- Обратная магистраль греющего контура от мультивалентной буферной емкости отопительного контура или
 - Обратная магистраль греющего контура для приготовления горячей воды

- © Обратная магистраль греющего контура к водогрейному котлу
- Подающая магистраль греющего контура от водогрейного котла
- К 3-ходовой переключающий клапан
- Датчик температуры обратной магистрали (отдельная принадлежность)


Приготовление горячей воды моновалентным емкостным водонагревателем и поддержка отопления помещений буферной емкостью

- Подающая магистраль греющего контура для приготовления горячей воды
- Подающая магистраль греющего контура для отопительного контура
- © Обратная магистраль греющего контура для отопительного контура
- Обратная магистраль греющего контура для приготовления горячей воды
- Обратная магистраль греющего контура к мультивалентной буферной емкости отопительного контура
- Обратная магистраль греющего контура от мультивалентной буферной емкости отопительного контура
- Обратная магистраль греющего контура к водогрейному котлу
- Подающая магистраль греющего контура от водогрейного котла
- 🕅 3-ходовой переключающий клапан
- Датчик температуры обратной магистрали (отдельная принадлежность)

6.5 Подключения в контуре ГВС

Подключение согласно DIN 1988

Блок предохранительных устройств согласно DIN 1988

- Диркуляционный трубопровод
- В Трубопровод горячей воды
- © Мембранный расширительный бак
- Контролируемое выходное отверстие выпускной линии
- Предохранительный клапан
- (F) Трубопровод холодной воды
- (G) Обратный клапан/разделитель трубопроводов
- (н) Запорный вентиль
- Редукционный клапан согласно DIN 1988-2, издание от декабря 1988 г.
- \bigcirc Водяной фильтр контура ГВС *13
- М Линия опорожения
- (N) Обратный клапан
- О Подключение манометра
- (P) Регулятор расхода

(рекомендуется монтаж и настройка максимального расхода воды в соответствии с 10-минутной производительностью емкостного водонагревателя)

Необходим монтаж предохранительного клапана.

Рекомендация: установить предохранительный клапан выше верхней кромки емкостного водонагревателя. За счет этого обеспечивается защита от загрязнения, образования накипи и высоких температур. При работах на предохранительном клапане опорожнение емкостного водонагревателя не требуется.

6.6 Жидкотопливные горелки

Однотрубная система снабжения жидким топливом

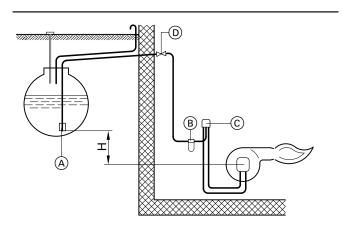
В систему снабжения жидким топливом обязательно должен быть встроен топливный фильтр R % (для Vitoflame 300: **тонкость** фильтрации макс. 40 мкм) с обратной линией (фильтр с удалителем воздуха и соединение между патрубком обратной магистрали и топливозаборным трубопроводом). При установке однотрубного фильтра мы рекомендуем использовать автоматический воздухоотводчик для жидкого топлива, монтируемый между топливным фильтром и горелкой.

Определение параметров линии подачи жидкого топлива выполняется на основании следующих таблиц с учетом требований к системам снабжения жидким топливом согласно DIN 4755-2. Разность высот Н (см. рисунок) между насосом жидкотопливной горелки и приемным клапаном в нижней части топливного резервуара, смонтированного ниже уровня горелки, не должна превышать 4 м.

Более значительная разность высот приводит к возрастанию уровня шума и износу насоса.

*13 Согласно DIN 1988-2 в установках с металлическими трубопроводами должен быть установлен водяной фильтр контура ГВС. При использовании полимерных трубопроводов согласно DIN 1988 и нашим рекомендациям также следует установить водяной фильтр контура ГВС, чтобы предотвратить попадание грязи в систему хозяйственно-питьевого водоснабжения.

424 GUS

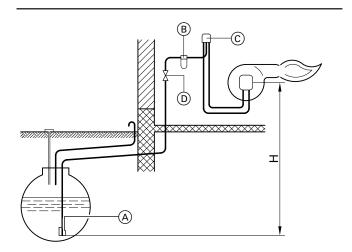

5829

Если в случае топливного резервуара, смонтированного ниже уровня горелки, максимальная длина трубопровода превышает величину, указанную в приведенной ниже таблице, необходимо предусмотреть подкачивающий топливный насос; при этом давление на топливозаборном патрубке насоса жидкотопливной горелки должно составлять не более 2 бар, и горелку необходимо защитить дополнительным электромагнитным клапаном.

Антисифонный клапан

- Антисифонный клапан необходим при использовании резервуаров жидкого топлива, в которых максимальный уровень топлива (может быть) выше самой низкой точки топливозаборного трубопровода жидкого топлива.
- Если резервуар расположен выше (на уровне приемного клапана или плавающее всасывающее устройство находится выше уровня топливного насоса) механические антисифонные клапаны использовать не следует; предпочтительно использование электромагнитного клапана.
- При монтаже антисифонного клапана необходимо следить за тем, чтобы разряжение со стороны подачи топлива на топливном насосе в наихудшем случае не превышало -0,4 бар. Для двухтрубных систем рекомендуется установка электрического предохранительного устройства с целью предотвращения сифонирования.

Однотрубная система подачи жидкого топлива, топливный резервуар смонтирован выше уровня горелки


Высота всасы- вания	Номина котла	льная те	пловая м	ощность	водогре	ейного			
Н	18 - 27 к	18 - 27 кВт 33 - 50 кВт 63 кВт							
М	макс. дл	макс. длина трубопровода, м *14							
	при использовании трубопровода [мм]								
	6x1	8x1	6x1	8x1	8x1	10x1			
+4,0	100	100	51	100	100	100			
+3,5	95	100	47	100	100	100			
+3,0	89	100	44	100	100	100			
+2,5	83	100	41	100	100	100			
+2,0	77	100	38	100	97	100			
+1,5	71	100	35	100	90	100			
+1,0	64	100	32	100	82	100			
+0,5	58	100	29	100	74	100			

Топливный резервуар смонтирован выше уровня горелки

- А Приемный клапан
- В Топливный фильтр
- © Воздухоотводчик
- Антисифонный клапан

^{*14} Принимается общая потеря давления в 0,35 бар применительно к легкому котельному топливу EL вязкостью 6,0 сСт (DIN 51603-1) с учетом 1 запорного вентиля, 1 приемного клапана в нижней части резервуара и 1 топливного фильтра.

Однотрубная система подачи жидкого топлива, топливный резервуар ниже уровня горелки

Высота всасы- вания	Номинальная тепловая мощность водогрейного котла								
Н	18 - 27 кВт 33 - 50 кВт 63 кВт								
M	макс. дл	макс. длина трубопровода, м ^{*14}							
	при исп	при использовании трубопровода [мм]							
	6x1	6x1 8x1 6x1 8x1 8x1 10x1							
0	52	100	26	100	32	100			
-0,5	46	100	23	100	28	100			
-1,0	40	100	20	100	24	100			
-1,5	33	100	17	84	20	100			
-2,0	27	100	14	69	17	100			
-2,5	21	100	10	53	13	84			
-3,0	15	75	7	37	9	59			
-3,5	9	44	4	22	5	35			
-4,0	_	12	_	6	_	10			

Топливный резервуар ниже уровня горелки

- А Приемный клапан
- В Топливный фильтр
- Воздухоотводчик
- (D) Запорное устройство

6.7 Газовая горелка

Снабжение газом

Подвод газа разрешается выполнять только специалистам по монтажу, имеющим на это допуск ответственного предприятия по газоснабжению.

При этом должны быть учтены следующие требования и нормы: EN 676, DVGW-TRGI 2008 и предписания VDE.

Топливо

Горелка предназначена для сжигания природного газа E и LL согласно инструкции DVGW G 260.

6.8 Система удаления продуктов сгорания

Система удаления продуктов сгорания

Согласно EN 13384 и DIN 18160 уходящие газы должны отводиться через систему удаления продуктов сгорания в атмосферу и предохраняться от охлаждения таким образом, чтобы осаждение в газоходе парообразных компонентов не создавало опасных ситуаций.

Водогрейные котлы работают с низкой температурой уходящих газов, поэтому система удаления продуктов сгорания должна соответствовать водогрейному котлу.

При использовании обычных труб дымоходов без теплоизоляции или с небольшой теплоизоляцией, имеющих слишком большое поперечное сечение (не влагостойкие газоходы) происходит ускоренное охлаждение уходящих газов, что вызывает выпадение конденсата и может привести к отсыреванию стенки газохода. В таких случая целесообразно использовать комбинированный регулятор тяги, который во многом способен предотвратить проникновение влаги через стенки трубы газохода.

Если требуемое поперечное сечение находится между двух диаметров, необходимо выбрать диаметр большего размера. Он должен, как минимум, соответствовать диаметру патрубка уходящих газов.

Если система удаления продуктов сгорания оборудована конденсатоотводчиком, то должен быть установлен сифон.

Соединительный элемент

Соединительный элемент от водогрейного котла к трубе дымохода должен изготавливаться по диаметру патрубка уходящих газов и прокладываться к трубе дымохода кратчайшим путем. В соединительный элемент разрешается устанавливать максимум два колена с обеспечением оптимального протока. Избегать наличия двух горизонтально расположенных колен по 90°. Соединительный элемент должен быть уплотнен на стыках и на отверстии для чистки. Измерительное отверстие также должно быть закрыто.

Обеспечить теплоизоляцию соединительного элемента между патрубком уходящих газов котла и трубой дымохода. Мы рекомендуем обратиться за консультацией к ответственному мастеру по надзору за дымовыми трубами и дымоходами.

424 GUS

^{*14} Принимается общая потеря давления в 0,35 бар применительно к легкому котельному топливу EL вязкостью 6,0 сСт (DIN 51603-1) с учетом 1 запорного вентиля, 1 приемного клапана в нижней части резервуара и 1 топливного фильтра.

Регулировка температуры уходящих газов у котлов Vitola 200

В тех случаях, когда ввиду конструктивных особенностей трубы дымохода (например, отсутствие теплоизоляции трубы газохода или чрезмерно большое поперечное сечение) требуется корректировка температуры уходящих газов, при использовании водогрейного котла Vitola можно простым способом повысить температуру уходящих газов, не меняя настройку горелки. Для этого можно открыть каналы в полу камеры сгорания из нержавеющей стали, закрытые теплоизоляцией с высокой огне-

Через открывшиеся отверстия в камеру сбора уходящих газов поступает определенное количество уходящих газов, за счет чего температура уходящих газов в определенной степени повышается — при открытии одного отверстия примерно на 10 К (°C). Это не оказывает влияния на высокое содержание CO_2 и оптимальные характеристики по саже.

Указание

При повышении температуры уходящих газов на 10 К коэффициент использования энергии снижается на 0,4 %. Поэтому данную меру следует выполнять только в исключительных случаях.

Более предпочтительны другие меры, например, использование регулятора тяги (при режиме эксплуатации горелки с отбором воздуха для горения из помещения установки) или изменение поперечного сечения трубы дымохода

Комбинированный регулятор тяги Vitoair

■ no DIN 4795

стойкостью.

■ для установки в трубу дымохода

Функция

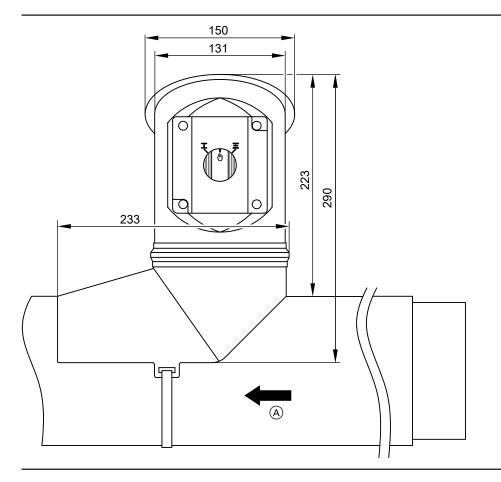
Благодаря подмешиванию воздуха точка росы уходящих газов снижается, тем самым препятствуя проникновению влаги через стенки трубы дымохода.

При выключении горелки регулирующая шайба открывается электромотором. Это обеспечивает непрерывную вентиляцию дымовой трубы.

Комбинированный регулятор тяги Vitoair компенсирует колебания тяги газохода и обеспечивает постоянное рабочее давление в водогрейном котле. В процессе работы горелки регулирующая шайба самостоятельно ограничивает напор.

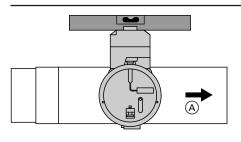
Для газовых водогрейных котлов с горелкой без вентилятора (атмосферной горелкой) комбинированный регулятор тяги Vitoair не требуется.

Указание

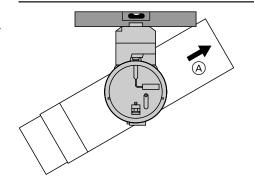

Vitoair разрешается устанавливать только в соединительные трубопроводы под разрежением.

Технические данные регулятора тяги Vitoair для установки в трубу дымохода

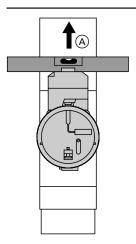
Соответствие согласно DIN 4795: группа 4 или A, B, C. Регистрационный номер по DIN NL 129/99.


Для горизонтального, вертикального и наклонного монтажа в трубе дымохода.

Соединительный патрубок, трубный патрубок и регулирующая шайба выполнены из высококачественной нержавеющей стали. Установка регулятора тяги в трубу дымохода при монтаже нового водогрейного котла занимает полчаса времени.


(А) Направление движения уходящих газов

Монтажное положение


Горизонтальная труба дымохода

(А) Направление движения уходящих газов

Наклонная труба дымохода

(А) Направление движения уходящих газов

Вертикальная труба дымохода

А Направление движения уходящих газов

Технические характеристики привода

 Номинальное напряжение
 230 В∼

 Номинальная частота
 50 Гц

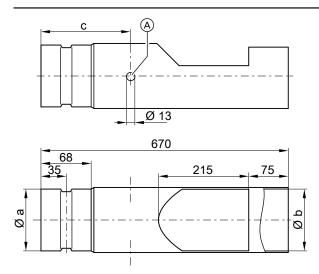
 Потребляемая мощность
 3 ВА

Вид защиты IP 42 согласно EN 60529,

обеспечить при монтаже

Допустимая температура окружаю-

щей среды

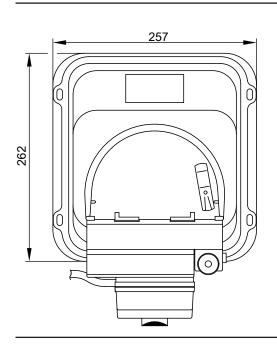

- в режиме эксплуатации от 0 до +70 °C - при хранении и транспортировке от -30 до +70 °C

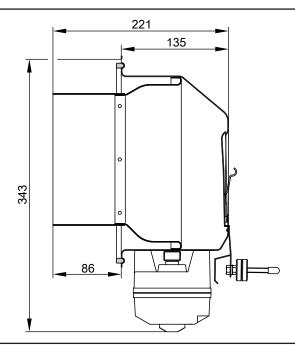
Крутящий момент 0,5 Нм

Состояние при поставке

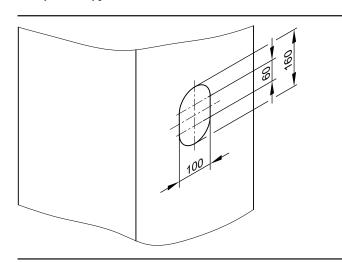
Комбинированный регулятор тяги Vitoair в следующем составе: трубный патрубок с установленной регулирующей шайбой и смонтированным электромотором с подключенным соединительным кабелем, стяжной лентой и присоединительным башмаком с хомутом.

Специальная труба дымохода или размеры требуемого отверстия при предоставляемой заказчиком трубе дымохода




(А) Измерительное отверстие

Модульный размер	Размер (мм)				
Ø мм	а	b	С		
130	129,7	130	280		
150	149,7	150	320		


Технические данные регулятора тяги Vitoair для установки на наружной стенке трубы газохода

Соответствие согласно DIN 4795: группа 5 или A - D. Регистрационный номер по DIN NL 102/01. Регулирующая шайба из высококачественной нержавеющей стали. Для газовых водогрейных котлов с горелкой без вентилятора (атмосферной горелкой) комбинированный регулятор тяги Vitoair не требуется.

Отверстие в трубе газохода

Технические характеристики привода

Номинальное напряжение 230 В~ Номинальная частота 50 Гц Потребляемая мощность 3 ВА

Вид защиты IP 42 согласно EN 60529, обеспечить при монтаже

Допустимая температура окружающей среды

– в режиме эксплуатации
 – при хранении и транспортировке
 от 0 до +70 °C
 от –30 до +70 °C
 Крутящий момент
 0,5 Нм

Состояние при поставке

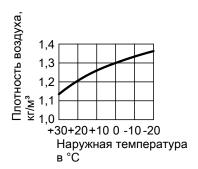
Комбинированный регулятор тяги Vitoair в следующем составе: корпус с регулирующей шайбой и смонтированным электромотором с подключенным соединительным кабелем и шаблоном для отверстия в трубе дымохода.

Назначение регулятора тяги

- Поддержание постоянной тяги в трубе дымохода →стабильные условия сжигания топлива
- Снижение внутренних потерь котла →экономия энергии
- Предотвращение проникновения влаги через стенки дымохода →позволяет избежать ущерба

Поддержание постоянной тяги трубы дымохода

Стабильные условия сжигания топлива обеспечиваются только при постоянной тяге в трубе дымохода.


Тяга трубы дымохода при работе без регулятора тяги

Тяга трубы дымохода (p_s) зависит от высоты трубы дымохода (H) и разности значений плотности воздуха (ϱL) и уходящих газов (ϱA) .

$$\begin{array}{l} \text{QDO} \\ \text{QD} \\ \text{D} \\ \text{p}_{\text{s}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} - \text{Q}_{\text{A}}) \\ \text{p}_{\text{c}} = \text{g} \cdot \text{H} \cdot (\text{Q}_{\text{L}} -$$

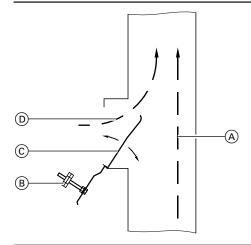
Расцет.

9,81 ·
$$\frac{M}{c^2}$$
 · м · $\frac{K\Gamma}{M^3}$ = 9,81 · $\frac{K\Gamma \cdot M}{c^2 \cdot M^2}$ = 9,81 · $\frac{H}{M^2}$ = 9,81 паскаль (Па) ≈ 10 Па

Пример:

Высота дымовой трубы H = 11 м Наружная температура ϑ_L = -15 °C Температура уходящих газов ϑ_A = 220 °C p_s = 9,81 · 11 · (1,35 – 0,71) = 69 Па

Пример:

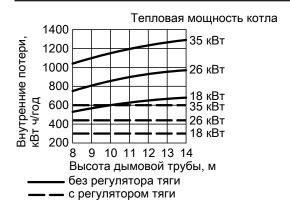

Высота дымовой трубы H = 11 м Наружная температура ϑ_L = +30 °C Температура уходящих газов ϑ_A = 160 °C p_s = 9,81 · 11 · (1,13 – 0,83) = 32 Па

Результат:

вследствие меняющейся тяги дымохода при постоянном расходе топлива постоянное качество сжигания не обеспечивается.

Тяга в трубе дымохода при работе с регулятором тяги Принцип действия регулятора тяги:

Регулирующая шайба перемещается в зависимости от разности значений давления между давлением в трубе дымохода и давлением окружающей среды. За счет поступающего дополнительного воздуха поддерживается постоянный напор в трубе дымохода.


- А Продукты сгорания
- **В** Противовес
- © Регулирующая шайба
- Дополнительный воздух

Результат

благодаря постоянной тяге дымохода при постоянном расходе топлива обеспечивается постоянное качество сжигания.

Снижение внутренних потерь котла

Регулятор тяги ограничивает разрежение, действующее на камеру сгорания, и, тем самым, количество воздуха, поступающего через смесительное устройство горелки.

Пример:

Тепловая мощность котла P_K = 35 кВт

Высота трубы дымохода Н = 12 м

Внутренние потери на охлаждение водогрейного котла

- без регулятора тяги:
- 1240 кВтч/год [124 л жидкого топлива в год
- с регулятором тяги:

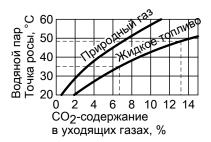
600 кВтч/год [60 л жидкого топлива в год

Результат:

Комбинированный регулятор тяги сокращает внутренние потери на охлаждение водогрейного котла. Расходы на приобретение амортизируются в течение сравнительно короткого времени.

Предотвращение проникновения влаги через стенки трубы дымохода

Во время работы горелки с помощью регулятора тяги в уходящие газы подмешивается воздух, в результате чего обеспечивается


- Уменьшение содержания CO₂
- Снижение точки росы водяного пара

Во время перерывов в работе горелки регулятор тяги обеспечивает вентиляцию трубы дымохода, что позволяет

■ Сушка конденсата в случае его образования

Результат:

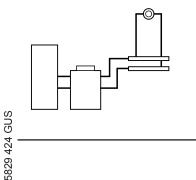
Комбинированный регулятор тяги способен эффективно предотвращать образование конденсата в трубе дымохода. Во многих случаях это позволяет отказаться от дорогостоящей модернизации дымохода.

Контроллеры

7.1 Соответствие типа контроллера и водогрейного котла

	Vitotronic 100				Vitotronic 200		
	KC1	KC2B	KC3	KC4B	KO1B	KO2B	
Vitorond 100, тип VR2B, до 63 кВт			Х	X		Х	
Vitorond 100, тип VR2B, 80 и 10 кВт			Х	Х		Х	
Vitola 200, тип VB2A	X	Х	X		Х		

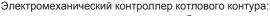
Vitotronic 100, тип КС1


Электромеханический контроллер котлового контура:

- для одного отопительного контура без смесителя
- для одноступенчатой горелки

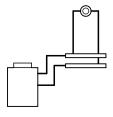
Согласно "Положению об экономии энергии" необходимо дополнительно подключить погодозависимый или управляемый по температуре помещения контроллер с временной программой для пониженной тепловой нагрузки.

Vitotronic 100, тип КС2В



Электронный контроллер котлового контура:

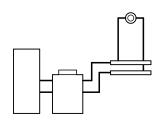
- для однокотловых установок
- для одноступенчатой, двухступенчатой или модулируемой горелки
- для режима работы с постоянной температурой котловой воды
- для одного отопительного контура без смесителя
- с цифровой индикацией
- с регулировкой температуры емкостного водонагревателя
- встроенная система диагностики и другие функции


Согласно "Положению об экономии энергии" необходимо дополнительно подключить погодозависимый или управляемый по температуре помещения цифровой контроллер с временной программой для обеспечения пониженной тепловой нагрузки.

Vitotronic 100, тип КС3

- для одного отопительного контура без смесителя
- для одноступенчатой горелки

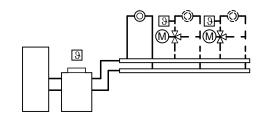
Согласно "Положению об экономии энергии" необходимо дополнительно подключить погодозависимый или управляемый по температуре помещения контроллер с временной программой для пониженной тепловой нагрузки.

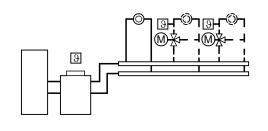


Vitotronic 100, тип КС4В

Электронный контроллер котлового контура:

- для однокотловых установок
- для одноступенчатой, двухступенчатой или модулируемой горелки
- для режима работы с постоянной температурой котловой воды
- для одного отопительного контура без смесителя
- с цифровой индикацией
- с регулировкой температуры емкостного водонагревателя
- встроенная система диагностики и другие функции


Согласно "Положению об экономии энергии" необходимо дополнительно подключить погодозависимый или управляемый по температуре помещения цифровой контроллер с временной программой для обеспечения пониженной тепловой нагрузки.


Vitotronic 200, тип KO1B

Контроллер погодозависимого цифрового программного управления котловым контуром и отопительными контурами:

- для однокотловых установок
- для одноступенчатой, двухступенчатой или модулируемой горелки
- для одного отопительного контура без смесителя и максимум двух отопительных контуров со смесителем, для каждого отопительного контура со смесителем необходим комплект привода смесителя (принадлежность)
- с регулировкой температуры емкостного водонагревателя
- панель управления с индикацией текста и графики
- цифровой таймер с суточными и недельными режимами работы
- раздельная настройка циклограмм переключения режимов, заданных значений и кривых отопления для отопительных контуров
- отдельные циклограммы переключения режимов для отопления помещений, приготовления горячей воды и циркуляционного насоса контура водоразбора ГВС
- встроенная система диагностики и другие функции
- информационный обмен через шину LON (телекоммуникационный модуль должен быть заказан отдельно)

Vitotronic 200, тип KO2B

Контроллер погодозависимого цифрового программного управления котловым контуром и отопительными контурами:

- для однокотловых установок
- для одноступенчатой, двухступенчатой или модулируемой горелки
- для одного отопительного контура без смесителя и максимум двух отопительных контуров со смесителем, для каждого отопительного контура со смесителем необходим комплект привода смесителя (принадлежность)
- с регулировкой температуры емкостного водонагревателя
- панель управления с индикацией текста и графики
- цифровой таймер с суточными и недельными режимами работы
- раздельная настройка циклограмм переключения режимов, заданных значений и кривых отопления для отопительных контуров
- отдельные циклограммы переключения режимов для отопления помещений, приготовления горячей воды и циркуляционного насоса контура водоразбора ГВС
- встроенная система диагностики и другие функции
- информационный обмен через шину LON (телекоммуникационный модуль должен быть заказан отдельно)

7.2 Компоненты в состоянии при поставке

Vitotronic	100		200		
Тип	KC2B	KC4B	KO1B	KO2B	
Компоненты				•	
Датчик температуры котла	х	Х	Х	х	
Датчик температуры емкостного водона-	х	Х	Х	х	
гревателя					
Датчик наружной температуры			Х	Х	

Vitotronic	100				200	
Тип	KC1	KC2B	KC3	KC4B	KO1B	KO2B
Компоненты						
Датчик температуры котла	х	х	х	х	х	х
Датчик температуры емкостного		х		х	х	х
водонагревателя						
Датчик наружной температуры					х	х

Датчик температуры котла

Технические данные

Длина кабеля Вид защиты 1,6 м, со штекером IP 32 согласно EN 60529, обеспечить при монтаже

Тип датчика Viessmann NTC 10 кОм, при

25 °C Допустимая температура окружаю-

щей среды

- в режиме эксплуатации от 0 до +130 °C - при хранении и транспортировке от -20 до +70 °C

Тип датчика

- в режиме эксплуатации от 0 до +90 °C

при хранении и транспортировке от −20 до +70 °C

Длина кабеля Вид защиты

5,8 м, со штекером IP 32 согласно EN 60529, обеспечить при монтаже

Датчик наружной температуры

Место монтажа:

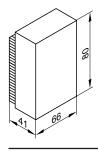
- северная или северо-западная стена здания
- 2 2,5 м над уровнем земли, а в многоэтажных зданиях в верхней половине 2-го этажа

Подключение:

- 2-проводной кабель длиной макс. 35 м и поперечным сечением медного провода 1,5 мм².
- Запрещается прокладка кабеля вместе с кабелями на 230/400 B.

Технические данные

IP 43 согласно EN 60529 Вид защиты


обеспечить при монтаже

Тип датчика Viessmann NTC, 10 kОм

при 25 °C

Допустимая температура окружающей среды при эксплуатации, хране-

нии и транспортировке от -40 до +70 °C

7.3 Vitotronic 100, тип КС1, № заказа 7450 700 и Vitotronic, тип КС3, № заказа 7186 582

Технические данные

Конструкция и функционирование

Модульная конструкция

В состав контроллера входят:

- сетевой выключатель ■ терморегулятор
- DIN TR 116807

или

DIN TR 96808

■ защитный ограничитель температуры **DIN STB 106005**

или

DIN STB 116907

или

DIN STB 98108 клеммная коробка

подключение горелки с помощью системного штекера подключение внешних приборов (насоса отопительного контура, термостата с часовым механизмом) с помощью клемм подключение потребителей трехфазного тока через дополнительные силовые контакторы

■ Поддержание постоянной температуры котловой воды Согласно "Положению об экономии энергии" необходимо дополнительно подключить погодозависимый или управляемый по температуре помещения контроллер для пониженной тепловой нагрузки (см. регистр 18 "Контроллеры отопительных контуров").

Характеристика регулирования

- Двухпозиционный регулятор
- Терморегулятор с диапазоном настройки 40 75 °C
- Ограничение максимальной температуры котловой воды: 75 °C, возможна перенастройка на 87 °C или 95 °C
- Настройка защитного ограничителя температуры: 110 °C, возможна перенастройка на 100 °C

Технические характеристики Vitotronic 100

230 B~ Номинальное напряжение Номинальная частота 50 Гц 6 A Номинальный ток Класс защиты

Вид защиты

– тип КС1 IP 30 согласно EN 60529,

обеспечить при монтаже

тип КС3 IP 20 D согласно EN 60529, обеспечить при монтаже Тип 1B согласно EN 60730-1 Принцип действия

Допуст. температура окруж. среды

в рабочем режиме

0 - 40 °C. использование в жилых помещениях и в котельных (при нормальных условиях окружающей

среды)

- при хранении и транспортировке -20 - +65 °C Номинальная нагрузочная способность

- насос отопительного контура 4(2) A, 230 B~ – штекер горелки 41 4(2) A, 230 B~ – всего макс. 6 А, 230 В~

7.4 Vitotronic 100, тип КС2В, № заказа 7441 799

Технические данные

Конструкция

Контроллер состоит из базового устройства, электронных модулей и панели управления.

Базовый прибор:

- сетевой выключатель
- клавиша TÜV
- интерфейс Optolink для портативного ПК
- терморегулятор TR 70601

T 118 2008 T1

■ защитный ограничитель температуры STB 116907

или

T 137 2010 Z1

- предохранитель
- индикатор режима работы и неисправностей
- отсек штекерных подключений:
 - подключение внешних приборов с помощью системных штекеров
 - подключение потребителей трехфазного тока через дополнительные силовые контакторы

Панель управления:

- Простое управление с помощью дисплея высокой контрастности с большим размером шрифта
- Управление с помощью символьного меню
- Клавиши управления:
 - навигация
 - подтверждение
 - настройки/меню
- Настройки:
 - температура котловой воды
- температура воды в контуре водоразбора ГВС
- режим работы
- коды
- тесты реле
- режим проверки
- Индикация:
 - температура котловой воды
 - температура воды в контуре водоразбора ГВС
 - рабочие параметры
- диагностические данные
- сигналы обслуживания и сигналы неисправностей

5829 424

- Поддержание постоянной температуры котловой воды
- Электронный ограничитель максимальной температуры котло-
- Интегрированная система диагностики
- ⊙ Регулирование температуры емкостного водонагревателя с приоритетным включением (выключение насоса отопительного контура)

- Контроллер контура приготовления горячей воды гелиоустановкой в сочетании с модулем управления гелиоустановкой, тип SM1
- Функции через внешний контакт:
 - внешний запрос теплогенерации с минимальным заданным значением температуры котловой воды
 - внешняя блокировка
 - терморегулятор/термостат для помещений
- Дополнительные функции через модуль расширения ЕА1 (принадлежность):
 - внешний запрос теплогенерации путем ввода заданного значения температуры котловой воды через вход 0 - 10 В
 - общий сигнал неисправности через беспотенциальный выход
- 3 цифровых входа для следующих функций: внешняя блокировка с входом сигнала неисправности вход сигнала неисправности

Согласно "Положению об экономии энергии" необходимо дополнительно подключить погодозависимый или управляемый по температуре помещения цифровой регулятор для режима управления по температуре помещения для пониженной тепловой нагрузки (см. регистр 18 "Контроллеры отопительных контуров" в прайс-листе Viessmann).

Регулировочная характеристика

- пропорциональная характеристика с двухточечным выходом
- терморегулятор для ограничения температуры котловой воды: 75 °C, возможна перенастройка на 87 °C или 95 °C
- настройка защитного ограничителя температуры: 110 °C, возможна перенастройка на 100 °C

Кодирующий штекер котла

Для согласования с водогрейным котлом (прилагается к водогрейному котлу).

Технические данные

Номинальное напряжение 230 B~ 50 Гц Номинальная частота Номинальный ток 6 A~ Потребляемая мощность 5 BT Класс защиты

IP 20 D согласно EN Вид защиты

60529

обеспечить при мон-

таже

Принцип действия Тип 1В согласно FN 60 730-1

Допустимая температура окружающей среды

– в режиме эксплуатации от 0 до +40 °С использование в

жилых помещениях и в котельных (при нормальных условиях окружающей среды)

- при хранении и транспортировке от −20 до +65 °C

Номинальная нагрузочная способность релейных выходов

 20
 Насос отопительного контура
 4(2) A 230 В~

 21
 Насос загрузки водонагревателя
 4(2) A 230 В~

 41
 Горелка
 4(2) A 230 В~

Только с дополнительным модулем (для водогрейных котлов фирмы Viessmann входит в комплект поставки):

 90
 горелка 2-ступен.
 1(0,5) A 230 B~

 90
 модулируемая горелка
 0,1 (0,05) A 230 B~

 Итого
 макс. 6 A 230 B~

Состояние при поставке

- Контроллер с встроенной панелью управления
- Датчик температуры котла
- Датчик температуры емкостного водонагревателя
- Кабель для подключения к сети
- Пакет с технической документацией

Отопительная установка с емкостным водонагревателем

Для нагрева емкостного водонагревателя необходимо отдельно заказать насос с обратным клапаном.

7.5 Vitotronic 100, тип КС4В, № заказа 7441 801

Технические данные

Конструкция

Контроллер состоит из базового прибора, электронных модулей и панели управления.

Базовый прибор:

- сетевой выключатель
- клеммы для контроля STB
- интерфейс Optolink для портативного ПК
- терморегулятор

TR 70601

или

T 118 2008 T1

■ защитный ограничитель температуры

STB 116907

или

T 137 2010 Z1

- предохранитель
- индикатор режима работы и неисправностей
- отсек штекерных подключений:
 - подключение внешних приборов с помощью системных штекеров
 - подключение потребителей трехфазного тока через дополнительные силовые контакторы

Блок управления:

- Простое управление с помощью дисплея высокой контрастности с большим размером шрифта
- Управление с помощью символьного меню
- Клавиши управления:
 - навигация
 - подтверждение
 - настройки/меню
- Настройки:
 - температура котловой воды
 - температура воды в контуре водоразбора ГВС
 - режим работы
 - коды
 - тесты реле
 - режим проверки
- Индикация:
- температура котловой воды
- температура горячей воды
- рабочие параметры
- диагностические данные
- сигналы обслуживания и сигналы неисправностей

Функции

- Поддержание постоянной температуры котловой воды
- Электронный ограничитель максимальной температуры котловой воды
- Интегрированная система диагностики
- Регулирование температуры емкостного водонагревателя с приоритетным включением (выключение насоса отопительного контура)
- Контроллер контура приготовления горячей воды гелиоустановкой в сочетании с модулем управления гелиоустановкой, тип SM1
- Функции через внешний контакт:
- внешний запрос теплогенерации с минимальным заданным значением температуры котловой воды
- внешняя блокировка
- терморегулятор/термостат для помещений
- Дополнительные функции через модуль расширения EA1 (принадлежность):
 - внешний запрос теплогенерации путем ввода заданного значения температуры котловой воды через вход 0 10 В
 - общий сигнал неисправности через беспотенциальный выход
 - 3 цифровых входа для следующих функций: внешняя блокировка с входом сигнала неисправности вход сигнала неисправности

Согласно "Положению об экономии энергии" необходимо дополнительно подключить погодозависимый или управляемый по температуре помещения цифровой контроллер с временной программой для пониженной тепловой нагрузки (см. регистр 18 "Контроллеры отопительных контуров" в прайс-листе Viessmann).

Регулировочная характеристика

- пропорциональная характеристика с двухточечным выходом
- терморегулятор для ограничения температуры котловой воды: 75 °C, возможна перенастройка на 87 °C или 95 °C
- настройка защитного ограничителя температуры: 110 °C, возможна перенастройка на 100 °C

Кодирующий штекер котла

Для согласования с водогрейным котлом (прилагается к водогрейному котлу).

Технические данные

230 B~ Номинальное напряжение Номинальная частота 50 Гц Номинальный ток 6 A~ Потребляемая мощность 5 Вт Класс зашиты

IP 20 D согласно EN Вид защиты

60529

обеспечить при мон-

таже

Тип 1В согласно Принцип действия

EN 60 730-1

Допустимая температура окружающей

среды

- в режиме эксплуатации от 0 до +40 °С

> использование в жилых помещениях и в котельных (при нормальных условиях окружающей среды) от -20 до +65 °C

Номинальная нагрузочная способность релейных выходов

20 Насос отопительного контура 4(2) A 230 B~ 21 Насос загрузки водонагревателя 4(2) A 230 B~ Горелка 4(2) A 230 B~ 41 Только с дополнительным модулем (для водогрейных котлов фирмы Viessmann входит в комплект поставки):

90 горелка 2-ступен. 1(0.5) A 230 B~ модулируемая горелка 0,1 (0,05) A 230 B~ макс. 6 А 230 В~ Итого

Состояние при поставке

- при хранении и транспортировке

- Контроллер с встроенной панелью управления
- Датчик температуры котла
- Датчик температуры емкостного водонагревателя
- Пакет с технической документацией

Отопительная установка с емкостным водонагревателем

Для нагрева емкостного водонагревателя необходимо отдельно заказать насос с обратным клапаном.

7.6 Vitotronic 200, тип KO1B, № заказа 7441 800

Технические данные

Конструкция

Контроллер состоит из базового устройства, электронных модулей и панели управления.

Базовый прибор:

- сетевой выключатель
- клавиша TÜV
- интерфейс Optolink для портативного ПК
- терморегулятор TR 70601

ипи

T 118 2008 T1

■ защитный ограничитель температуры

STB 116907 или

T 137 2010 Z1

- предохранитель
- индикатор режима работы и неисправностей
- отсек штекерных подключений:
 - подключение внешних приборов с помощью системных ште-
 - подключение потребителей трехфазного тока через дополнительные силовые контакторы

Панель управления

- Простое управление:
- графический дисплей с текстовой индикацией
- большой размер шрифта и контрастное черно-белое изобра-
- контекстная текстовая помощь
- Клавиши управления:
- навигация
- подтверждение
- справка и дополнительная информация
- меню

5829 424 GUS

- Настройки:
 - заданные значения температуры помещения
 - температура воды в контуре водоразбора ГВС
 - режим работы
 - временные программы для отопления помещения, приготовления горячей воды и циркуляции
 - экономный режим
 - режим вечеринки
 - программа отпуска
 - кривые отопления
- коды
- тесты реле
- Индикация
 - температура котловой воды
 - температура воды в контуре водоразбора ГВС
- рабочие параметры
- диагностические данные
- сигналы обслуживания и сигналы неисправностей

Функции

- Регулирование температуры котловой воды и/или температуры подачи в зависимости от погодных условий
- Электронный ограничитель максимальной и минимальной температуры подачи отопительных контуров со смесителем
- Отключение насосов отопительных контуров и горелки в зависимости от теплопотребления (кроме горелок водогрейных котлов с ограничением минимального значения температуры котловой воды)
- Настройка переменного предела отопления
- Защита насосов от заклинивания
- Интегрированная система диагностики
- Устройство контроля температуры отходящих газов в сочетании с датчиком температуры уходящих газов
- Индикация необходимости технического обслуживания

- Адаптивное управление температурой воды в емкостном водонагревателе с приоритетным переключением (выключение насосов отопительного контура, закрытие смесителей)
- Дополнительная функция приготовления горячей воды (кратковременный нагрев до более высокой температуры)
- Контроллер контура приготовления горячей воды гелиоустановкой в сочетании с модулем управления гелиоустановкой, тип SM1
- Программа сушки бетона для отопительных контуров со смесителем
- Возможность подключения внешнего устройства сигнализации неисправностей
- Функции через внешний контакт:
 - внешний запрос теплогенерации с минимальным заданным значением температуры котловой воды
 - внешняя блокировка
- Дополнительные функции через модуль расширения EA1 (принадлежность):
 - внешний запрос теплогенерации путем ввода заданного значения температуры котловой воды через вход 0 10 В
 - общий сигнал неисправности ипи
 - управление магистральным насосом на тепловой пункт через беспотенциальный выход
 - 3 цифровых входа для следующих функций: внешнее переключение режима работы раздельно для отопительных контуров 1 - 3
 - внешняя блокировка с входом сигнала неисправности вход сигнала неисправности
 - кратковременный режим работы циркуляционного насоса контура водоразбора ГВС

Выполняются требования EN 12831 по расчету теплопотребления. Для уменьшения мощности нагрева при низких наружных температурах пониженная температура помещения повышается. Чтобы сократить время нагрева по прошествии периода снижения температуры, температура подачи на ограниченное время возрастает.

Согласно "Положению об экономии энергии" регулировка температуры в отдельных помещениях должна осуществляться, например, с помощью терморегулирующих вентилей.

Регулировочная характеристика

- Контроллер котлового контура: пропорциональная характеристика с двухточечным выходом при работе со ступенчатой горелкой пропорциональная характеристика с трехточечным выходом при работе с модулируемой горелкой
- Контроллер отопительного контура:
 пропорциональная характеристика с трехточечным выходом
- Терморегулятор для ограничения температуры котловой воды: 75 °C, возможна перенастройка на 87 °C или 95 °C
- Настройка защитного ограничителя температуры: 110 °C. возможна перенастройка на 100 °C
- Диапазон настройки кривой отопления:
 - наклон: от 0,2 до 3,5
 - уровень от -13 до 40 K
 - макс. ограничение: от 20 до 130 °C
 - мин. ограничение: от 1 до 127 °C
- Разность температур для отопительного контура со смесителем: от 0 до 40К
- Диапазон настройки заданного значения температуры воды в контуре водоразбора ГВС:
- от 10 до 60 $^{\circ}\text{C},$ возможна перенастройка на диапазон от 10 до 90 $^{\circ}\text{C}$

Кодирующий штекер котла

Для согласования с водогрейным котлом (прилагается к водогрейному котлу).

Таймер

Цифровой таймер (встроен в панель управления)

- Суточная и недельная программы, календарь
- Автоматическое переключение между летним и зимним временем
- Автоматическая функция приготовления горячей воды и циркуляционный насос контура ГВС
- Предварительная заводская настройка времени суток, дней недели и стандартных циклограмм переключения режимов отопления помещения, приготовления горячей воды и циркуляционного насоса контура ГВС
- Циклограммы переключения режимов программируются индивидуально, возможна настройка максимум четырех циклов в день

Наименьший период между переключениями: 10 мин Резерв времени работы: 14 дней

Настройка режимов работы

Во всех режимах работы предусмотрен контроль защиты от замерзания (см. функцию защиты от замерзания) отопительной установки.

Могут быть настроены следующие режимы работы:

- Отопл.+ гор.вода
- Только горячая вода
- Дежурный режим

Внешнее переключение режима работы раздельно для отопительных контуров в сочетании с модулем расширения EA1 (принадлежность).

Летний режим

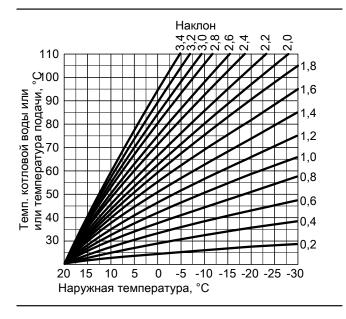
("Только ГВС")

Горелка включается только в том случае, если необходим нагрев емкостного водонагревателя (включается и выключается при управлении нагревом емкостного водонагревателя).

Поддерживается минимальная температура котловой воды, требуемая для соответствующего водогрейного котла.

Функция защиты от замерзания

- Функция защиты от замерзания включается при наружной температуре ниже +1 °C.
- В режиме защиты от замерзания включаются насосы отопительных контуров и температура котловой воды поддерживается на уровне заданного значения для режима пониженной тепловой нагрузки. Минимум на нижнем значении температуры около 20 °С. Для водогрейных котлов с ограничением минимальной температуры поддерживается соответствующее значение температуры.
- Функция защиты от замерзания выключается при наружной температуре выше +3 °C; при этом выключаются насос отопительного контура и горелка.


Настройка отопительных характеристик (наклон и уровень)

Контроллер Vitotronic в режиме погодозависимой теплогенерации регулирует температуру котловой воды (= температуру подачи отопительного контура без смесителя) и температуру подачи отопительных контуров со смесителем. При этом температура котловой воды автоматически на 0 - 40 К превышает требуемое в данный момент максимальное заданное значение температуры подачи (в состоянии при поставке на 8 К).

Температура подачи, необходимая для достижения определенной температуры помещения, зависит от отопительной установки и от теплоизоляции отапливаемого здания.

С помощью настройки кривых отопления температура котловой воды и температура подачи приводятся в соответствие с данными условиями.

Верхний предел температуры котловой воды ограничен терморегулятором и электронным ограничителем максимальной температуры.

Технические данные

Номинальное напряжение	230 B~
Номинальная частота	50 Гц
Номинальный ток	6 A~
Потребляемая мощность	5 Вт

Класс защиты

Вид защиты IP 20 D согласно EN

60529

обеспечить при мон-

таже

Принцип действия Тип 1В согласно

EN 60 730-1

Допустимая температура окружающей

среды

– в режиме эксплуатации от 0 до +40 °C

использование в жилых помещениях и в котельных (при нормальных условиях окружающей среды) от –20 до +65 °C

при хранении и транспортировке
 Номинальная нагрузочная способность

релейных выходов

 20
 Насос отопительного контура
 4(2) A 230 B~

 21
 Насос загрузки водонагревателя
 4(2) A 230 B~

28 Циркуляционный насос контура

ГВС 4(2) А 230 В~ 41 Горелка 4(2) А 230 В~

Только с дополнительным модулем (для водогрейных котлов фирмы Viessmann входит в комплект поставки):

 90
 горелка 2-ступен.
 1(0,5) A 230 B~

 90
 модулируемая горелка
 0,1 (0,05) A 230 B~

 Итого
 макс. 6 A 230 B~

Состояние при поставке

- Контроллер с встроенной панелью управления
- Датчик наружной температуры
- Датчик температуры котла
- Датчик температуры емкостного водонагревателя
- Кабель для подключения к сети
- Пакет с технической документацией

Отопительная установка с емкостным водонагревателем

Для нагрева емкостного водонагревателя необходимо отдельно заказать насос с обратным клапаном.

Отопительная установка с отопительным контуром со смесителем

Для отопительного контура со смесителем необходим комплект привода смесителя (принадлежность).

Информационный обмен

Для информационного обмена с другими контроллерами необходим телекоммуникационный модуль LON (принадлежность).

7.7 Vitotronic 200, тип KO2B, № заказа 7441 802

Технические данные

Конструкция

Контроллер состоит из базового устройства, электронных модулей и панели управления.

Базовый прибор:

- сетевой выключатель
- клеммы для контроля STB
- интерфейс Optolink для портативного ПК
- терморегулятор

TR 70601

или

T 118 2008 T1

■ защитный ограничитель температуры STB 116907

или

5829 424 GUS

T 137 2010 Z1

- предохранитель
- индикатор режима работы и неисправностей
- отсек штекерных подключений:
 - подключение внешних приборов с помощью системных штекеров
 - подключение потребителей трехфазного тока через дополнительные силовые контакторы

Панель управления

- Простое управление:
 - графический дисплей с текстовой индикацией
- большой размер шрифта и контрастное черно-белое изображение
- контекстная текстовая помощь
- Клавиши управления:
 - навигация
 - подтверждение
 - справка и дополнительная информация
 - меню

- Настройки:
 - заданные значения температуры помещения
 - температура воды в контуре водоразбора ГВС
 - режим работы
 - временные программы для отопления помещения, приготовления горячей воды и циркуляции
 - экономный режим
 - режим вечеринки
 - программа отпуска
 - кривые отопления
 - коды
- тесты реле
- Индикации
- температура котловой воды
- температура воды в контуре водоразбора ГВС
- рабочие параметры
- диагностические данные
- сигналы обслуживания и сигналы неисправностей

Функции

- Регулирование температуры котловой воды и/или температуры подачи в зависимости от погодных условий
- Электронный ограничитель максимальной и минимальной температуры подачи отопительных контуров со смесителем
- Отключение насосов отопительных контуров и горелки в зависимости от теплопотребления (кроме горелок водогрейных котлов с ограничением минимального значения температуры котловой воды)
- Настройка переменного предела отопления
- Защита насоса от заклинивания
- Интегрированная система диагностики
- Устройство контроля температуры отходящих газов в сочетании с датчиком температуры уходящих газов
- Индикация необходимости технического обслуживания
- Адаптивное управление температурой воды в емкостном водонагревателе с приоритетным переключением (выключение насосов отопительного контура, закрытие смесителей)
- Дополнительная функция приготовления горячей воды (кратковременный нагрев до более высокой температуры)
- Контроллер контура приготовления горячей воды гелиоустановкой в сочетании с модулем управления гелиоустановкой, тип SM1
- Программа сушки бетона для отопительных контуров со смесителем
- Возможность подключения внешнего устройства сигнализации неисправностей
- Функции через внешний контакт:
 - внешний запрос теплогенерации с минимальным заданным значением температуры котловой воды
 - внешняя блокировка
- Дополнительные функции через модуль расширения EA1 (принадлежность):
 - внешний запрос теплогенерации путем ввода заданного значения температуры котловой воды через вход 0 10 В
 - общий сигнал неисправности или

управление магистральным насосом на тепловой пункт через беспотенциальный выход

3 цифровых входа для следующих функций:
 внешнее переключение режима работы раздельно для отопительных контуров 1 - 3

В разделя блокировка с входом систала ноисправности

внешняя блокировка с входом сигнала неисправности вход сигнала неисправности

кратковременный режим работы циркуляционного насоса контура водоразбора ГВС

Выполняются требования EN 12831 по расчету теплопотребления. Для уменьшения мощности нагрева при низких наружных температурах пониженная температура помещения повышается. Чтобы сократить время нагрева по прошествии периода снижения температуры, температура подачи на ограниченное время возрастает.

Согласно "Положению об экономии энергии" регулировка температуры в отдельных помещениях должна осуществляться, например, с помощью терморегулирующих вентилей.

Регулировочная характеристика

- Контроллер котлового контура: пропорциональная характеристика с двухточечным управлением при работе со ступенчатой горелкой пропорциональная характеристика с трехточечным управлением при работе с модулируемой горелкой
- Контроллер отопительного контура:
 пропорциональная характеристика с трехточечным управлением
- Терморегулятор для ограничения температуры котловой воды: 75 °C, возможна перенастройка на 87 °C или 95 °C
- Настройка защитного ограничителя температуры: 110 °C, возможна перенастройка на 100 °C
- Диапазон настройки кривой отопления:
 - наклон: от 0,2 до 3,5
 - уровень: от -13 до 40 K
 - макс. ограничение: от 20 до 130 °C
 - мин. ограничение: от 1 до 127 °C
- Разность температур для отопительного контура со смесителем: от 0 до 40К
- Диапазон настройки заданного значения температуры воды в контуре водоразбора ГВС: от 10 до 60 °C, возможна перенастройка на диапазон от 10 до 90 °C

Кодирующий штекер котла

Для согласования с водогрейным котлом (прилагается к водогрейному котлу).

Таймер

Цифровой таймер (встроен в панель управления)

- Суточная и недельная программы, календарь
- Автоматическое переключение между летним и зимним временем
- Автоматическая функция приготовления горячей воды и циркуляционный насос контура ГВС
- Предварительная заводская настройка времени суток, дней недели и стандартных циклограмм переключения режимов отопления помещения, приготовления горячей воды и циркуляционного насоса контура ГВС
- Циклограммы переключения режимов программируются индивидуально, возможна настройка максимум четырех циклов в день

Наименьший период между переключениями: 10 мин Резерв времени работы: 14 дней

Настройка режимов работы

Во всех режимах работы предусмотрен контроль защиты от замерзания (см. функцию защиты от замерзания) отопительной установки.

Могут быть настроены следующие режимы работы:

- Отопл.+ гор.вода
- Только горячая вода
- Дежурный режим

Внешнее переключение режима работы раздельно для отопительных контуров в сочетании с модулем расширения EA1 (принадлежность).

Летний режим

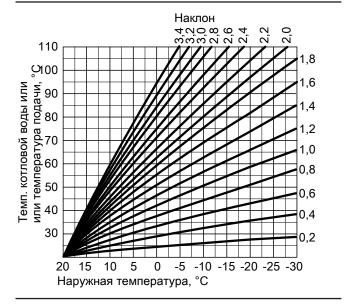
("Только ГВС")

Горелка включается только в том случае, если необходим нагрев емкостного водонагревателя (включается и выключается при управлении нагревом емкостного водонагревателя). Поддерживается минимальная температура котловой воды, тре-

буемая для соответствующего водогрейного котла.

Функция защиты от замерзания

- Функция защиты от замерзания включается при наружной температуре ниже +1 °C.
 - В режиме защиты от замерзания включаются насосы отопительных контуров и температура котловой воды поддерживается на уровне заданного значения для режима пониженной тепловой нагрузки. Минимум - на нижнем значении температуры около 20 °C. Для водогрейных котлов с ограничением минимальной температуры поддерживается соответствующее значение температуры.
- Функция защиты от замерзания выключается при наружной температуре выше +3 °C; при этом выключаются насос отопительного контура и горелка.


Настройка отопительных характеристик (наклон и уровень)

Контроллер Vitotronic в режиме погодозависимой теплогенерации регулирует температуру котловой воды (= температуру подачи отопительного контура без смесителя) и температуру подачи отопительных контуров со смесителем. При этом температура котловой воды автоматически на 0 - 40 К превышает требуемое в данный момент максимальное заданное значение температуры подачи (в состоянии при поставке на 8 К).

Температура подачи, необходимая для достижения определенной температуры помещения, зависит от отопительной установки и от теплоизоляции отапливаемого здания.

С помощью настройки кривых отопления температура котловой воды и температура подачи приводятся в соответствие с данными условиями.

Верхний предел температуры котловой воды ограничен терморегулятором и электронным ограничителем максимальной температуры.

Технические данные

230 B~ Номинальное напряжение Номинальная частота 50 Гц 6 A~ Номинальный ток Потребляемая мощность 5 Вт Класс зашиты

IP 20 D согласно EN Вид защиты

60529

обеспечить при мон-

таже

Тип 1В согласно Принцип действия

EN 60 730-1

Допустимая температура окружающей среды

- в режиме эксплуатации

от 0 до +40 °С использование в жилых помещениях и в котельных (при нормальных условиях окружающей среды) от -20 до +65 °C

- при хранении и транспортировке Номинальная нагрузочная способность релейных выходов

4(2) A 230 B~ 20 Насос отопительного контура 21 Насос загрузки водонагревателя 4(2) A 230 B~

28 Циркуляционный насос контура

ГВС 4(2) A 230 B~ 41 4(2) A 230 B~ Горелка

Только с дополнительным модулем (для водогрейных котлов фирмы Viessmann входит в комплект поставки):

1(0,5) A 230 B~ 90 горелка 2-ступен. 90 модулируемая горелка 0,1 (0,05) A 230 B~ макс. 6 А 230 В~ Итого

Состояние при поставке

- Контроллер с встроенной панелью управления
- Датчик наружной температуры
- Датчик температуры котла
- Датчик температуры емкостного водонагревателя 5829 424 GL
 - Пакет с технической документацией

Отопительная установка с емкостным водонагревателем

Для нагрева емкостного водонагревателя необходимо отдельно заказать насос с обратным клапаном.

Отопительная установка с отопительным контуром со сме-

Для отопительного контура со смесителем необходим комплект привода смесителя (принадлежность).

Информационный обмен

Для информационного обмена с другими контроллерами необходим телекоммуникационный модуль LON (принадлежность).

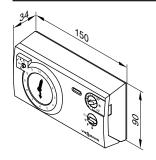
7.8 Принадлежности контроллера

Распределение принадлежностей по типам контроллеров

Vitotronic	100 200					
Тип	KC1	KC2B	KC3	KC4B	KO1B	KO2B
Принадлежности		,				
Vitotrol 100 (тип UTA)	Х	X	X	X		
Vitotrol 100 (тип UTDB)	Х	X	X	X		
Внешний модуль расширения Н4		X		X		
Vitotrol 100 (тип UTDB-RF)	Х	X	Х	X		
Vitotrol 200A					X	X
Vitotrol 300A					X	X
Vitohome 300					Х	X
Датчик температуры помещения в качестве расширения к Vitotrol					Х	X
300A						
Погружной датчик температуры		X		Х	Х	Х
Датчик температуры уходящих газов		X		X	X	X
Внешний модуль расширения Н5		X		X	X	X
Распределитель шины KM-BUS		X		X	Х	Х
Комплект привода смесителя (монтаж на смесителе)					X	X
Блок управления приводом смесителя (настенный монтаж)					X	X
Погружной терморегулятор					X	X
Накладной терморегулятор					Х	Х
Модуль управления гелиоустановкой, тип SM1		X		X	Х	Х
Модуль расширения ЕА1		X		X	X	X
Vitocom 100, тип GSM		X		X	X	X
Соединительный кабель LON					X	X
Муфта LON					Х	Х
Соединительный штекер LON					Х	X
Розетка LON					Х	X
Оконечное сопротивление					Х	X
Телекоммуникационный модуль LON					Х	X

Vitotrol 100, тип UTA

№ заказа 7170 149


Терморегулятор для помещений

- с релейным (двухпозиционным) выходом
- с аналоговым таймером
- с задаваемой суточной программой
- стандартное время переключений задано изготовителем (возможность индивидуального программирования)
- кратчайший период между переключениями 15 минут

Vitotrol 100 устанавливается в типовом помещении сооружения на внутренней стене напротив радиаторов; не устанавливать на полках, в нишах, а также в непосредственной близости от дверей или источников тепла (например, прямых солнечных лучей, камина, телевизора и т.п.)

Подключение к контроллеру:

3-проводным кабелем с поперечным сечением провода 1,5 мм² (без желто-зеленого провода) на 230 В~.

Технические характеристики

Номинальное напряжение Номинальная нагрузочная способность контакта

Степень защиты

230 В~/50 Гц

6(1) A 250 B~

IP 20 согласно EN 60529 обеспечить при монтаже

Допустимая температура окружающего воздуха

- при работе

- при хранении и транспортировке Диапазон настройки заданных зна-

чений для нормального и пониженного режима эксплуатации

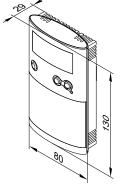
Заданная температура помещения в дежурном режиме

от 0 до +40 °C от -20 до +60 °C

от 10 до 30 °C

Vitotrol 100, тип UTDB

№ заказа Z007 691


Терморегулятор для помещений

- с релейным (двухпозиционным) выходом
- с цифровым таймером
- с суточной и недельной программами
- с управлением в режиме текстового меню:
 - 3 предварительно настроенные временные программы, с индивидуальной настройкой
- непрерывный ручной режим работы с регулируемым заданным значением температуры помещения
- работа в режиме защиты от замерзания
- программа отпуска
- с клавишами для режима вечеринки и экономичного режима

Установка в типовом помещении сооружения на внутренней стене напротив радиаторов. Не устанавливать на полках, в нишах, а также в непосредственной близости от дверей или источников тепла (например, прямых солнечных лучей, камина, телевизора и т.д.).

Автономный режим питания (две щелочные батареи "миньон" по 1,5 В, тип LR6/AA, срок службы примерно 1,5 года). Подключение к контроллеру:

2-проводным кабелем с поперечным сечением провода 0,75 мм² на 230 B~.

Технические характеристики

Номинальное напряжение

3 B-

Батарея LR6/AA

Номинальная нагрузочная способность беспотенциального контакта

6(1) A, 230 B~ – макс. 1 MA, 5 B-– мин.

Вид защиты IP 20 согласно EN 60529 обеспечить при монтаже

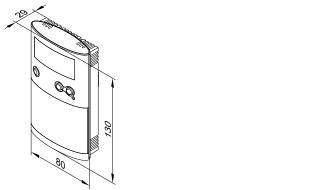
RS тип 1В согласно

Принцип действия EN 60730-1

Допустимая температура окружающего воздуха

– в рабочем режиме от 0 до +40 °C - при хранении и транспортировке от −25 до +65 °C

Диапазоны настройки

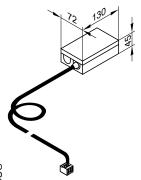

при замене батареи

- комфортная температура от 10 до 40 °C от 10 до 40 °C - пониженная температура

- Температура защиты от замерза-

Резервная длительность работы

5°C 3 мин.



Внешний модуль расширения Н4

№ заказа 7197 227

Адаптер электрических подключений для подсоединения Vitotrol 100, тип UTDB или программного терморегулятора на 24 В посредством низковольтного кабеля.

С кабелем (длиной 0,5 м) и штекером для подключения к Vitotronic 100.

Технические характеристики

Сетевое напряжение 230 B~ Выходное напряжение 24 B~ Сетевая частота 50 Гц Потребляемая мошность 2.5 BT Нагрузка 24 В~ (макс.) 10 BT Класс защиты IP 41 Вид защиты

Допустимая температура окружаюшего воздуха

- в режиме работы от 0 до +40 °C

Использование в жилых помещениях и в котельных (при нормальных условиях окружающей среды)

- при хранении и транспортировке от -20 до +65 °C

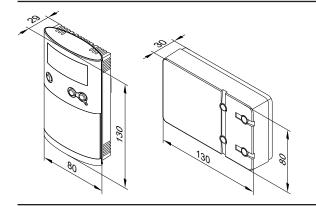
VIESMANN

Vitotrol 100, тип UTDB-RF

№ заказа Z007 692

Терморегулятор для помещений с встроенным радиопередатчиком и приемником

- с цифровым таймером
- с суточной и недельной программами
- с управлением в режиме текстового меню:
- 3 предварительно настроенные временные программы, с индивидуальной настройкой
- непрерывный ручной режим работы с регулируемым заданным значением температуры помещения
- работа в режиме защиты от замерзания
- программа отпуска
- с клавишами для режима вечеринки и экономичного режима


Установка в типовом помещении сооружения на внутренней стене напротив радиаторов. Не устанавливать на полках, в нишах, а также в непосредственной близости от дверей или источников тепла (например, прямых солнечных лучей, камина, телевизора и т.д.).

Автономный режим питания терморегулятора для помещений (две щелочные батареи "миньон" по 1,5 B, тип LR6/AA, срок службы примерно 1,5 года).

Приемник с индикацией состояния реле.

Подсоединение приемника к контроллеру (в зависимости от типа контроллера):

- 4-проводным кабелем с поперечным сечением провода 1,5 мм² на 230 B~
 - или
- 3-проводным кабелем без желто-зеленой жилы на 230 В~
- 2-проводным кабелем с поперечным сечением провода 0,75 мм² низкого напряжения для подключения к контроллеру и дополнительно 2-проводным кабелем на 230 В~ для подключения к сети

Технические характеристики терморегулятора для помещений

3 B-Номинальное напряжение Частота передачи 868 МГц < 10 мВт Мощность передачи

прибл. 25 - 30 м в зданиях в Дальность действия

зависимости от конструкции IP 20 согласно EN 60529

обеспечить при монтаже

RS тип 1В согласно Принцип действия

EN 60730-1

Допустимая температура окружаю-

щего воздуха

Вид защиты

- в рабочем режиме от 0 до +40 °C – при хранении и транспортировке от −25 до +65 °C

Диапазоны настройки

комфортная температура от 10 до 40 °C пониженная температура от 10 до 40 °C

- температура защиты от замерза-

5°C

Резервная длительность работы

при замене батареи 3 мин.

Технические характеристики приемника

Рабочее напряжение 230 B~ ± 10% 50 Гц

Номинальная нагрузочная способность беспотенциального контакта

6(1) A, 230 B~ макс. 1 MA, 5 B-– мин.

Вид защиты IP 20 согласно EN 60529 обеспечить при монтаже

Класс защиты II по EN 60730-1 при монтаже в соответствии с назна-

чением

Допустимая температура окружаю-

щего воздуха

от 0 до +40 °C в рабочем режиме при хранении и транспортировке от −25 до +65 °C

Указание для Vitotrol 200A и 300A

Для каждого отопительного контура установки можно использовать одно устройство Vitotrol 200A или одно устройство Vitotrol

Vitotrol 200A может обслуживать один отопительный контур, а Vitotrol 300A - до трех отопительных контуров.

К контроллеру могут быть подключены максимум два устройства дистанционного управления.

Vitotrol 200A

№ заказа Z008 341

Абонент шины KM-BUS.

Функции:

- Индикация температуры помещения, наружной температуры и текущего режима.
- Настройка нормальной температуры помещения (дневной температуры) и режима работы в базовом меню.

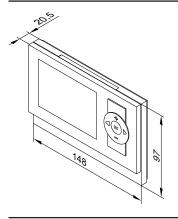
Указание

Настройка пониженной температуры помещения (ночной температуры) выполняется на контроллере.

- Кнопками включается режим вечеринки и экономичный режим
- Только один отопительный контур со смесителем: встроенный датчик температуры помещения для управления по температуре помещения

Указание

Устройство Vitotrol 200А для управления по температуре помещения должно быть установлено в типовом помещении здания


Место монтажа:

- Режим погодозависимой теплогенерации: размещение в любом месте здания.
- Управление по температуре помещения: размещение в типовом помещении здания на внутренней стене напротив радиаторов. Не устанавливать на полках, в нишах, а также в непосредственной близости от дверей или источников тепла (например, прямых солнечных лучей, камина, телевизора и т.п.)

Встроенный датчик температуры помещения регистрирует температуру помещения и выполняет, если потребуется, нужную коррекцию температуры подачи.

Подключение:

- 2-проводной кабель длиной макс. 50 м (в том числе при подключении нескольких устройств дистанционного управления)
- Запрещается прокладка кабеля вместе с кабелями на 230/400 В.
- Низковольтный штекер входит в комплект поставки

Технические данные

Электропитание через шину KM-BUS
Потребляемая мощность

Класс зашиты

О,2 Вт

Вид защиты IP 30 согласно EN 60529 обеспечить при монтаже

Допустимая температура окружающей среды

- в режиме эксплуатации от 0 до +40 °C - при хранении и транспортировке от -20 до +65 °C

Диапазон настройки заданной темпе-

ратуры помещения от 3 до 37 °C

Vitotrol 300A

№ заказа Z008 342

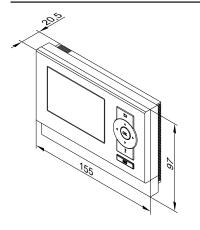
Абонент шины KM-BUS.

Функции:

- Индикация:
 - Температура помещения
 - Наружная температура
 - Режим работы
 - Текущий режим
 - Энергоотдача гелиоустановки в виде графика
- Настройки:
 - заданные температуры помещения в нормальном (дневная температура) и пониженном (ночная температура) режиме работы в базовой странице меню
 - режим работы, циклограммы отопительных контуров, приготовление горячей воды и циркуляционный насос, а также другие настройки посредством меню с текстовой индикацией на дисплее
- Режим вечеринки и экономный режим, активируется посредством меню
- Только для отопительного контура со смесителем: встроенный датчик температуры помещения для управления по температуре помещения

Указание

Устройство Vitotrol 300A для управления по температуре помещения должно быть установлено в типовом помещении здания.


Место монтажа:

- Режим погодозависимой теплогенерации: размещение в любом месте здания.
- Управление по температуре помещения: размещение в типовом помещении здания на внутренней стене напротив радиаторов. Не устанавливать на полках, в нишах, а также в непосредственной близости от дверей или источников тепла (например, прямых солнечных лучей, камина, телевизора и т.п.)

Встроенный датчик температуры помещения регистрирует температуру помещения и выполняет, если потребуется, нужную коррекцию температуры подачи.

Подключение:

- 2-проводной кабель длиной макс. 50 м (в том числе при подключении нескольких устройств дистанционного управления)
- Запрещается прокладка кабеля вместе с кабелями на 230/400 В.
- Низковольтный штекер входит в комплект поставки

Технические данные

Электропитание через шину KM-BUS

Потребляемая мощность 0,5 B_T Класс защиты Ш

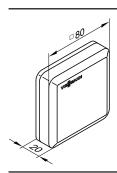
Вид защиты IP 30 согласно EN 60529 обеспечить при монтаже

Допустимая температура окружающей среды

- в режиме эксплуатации от 0 до +40 °C от -20 до +65 °C - при хранении и транспортировке

Диапазон настройки заданной темпе-

ратуры помещения от 3 до 37 °C


Датчик температуры помещения

№ заказа 7438 537

Отдельный датчик температуры помещения в качестве принадлежности к Vitotrol 300A; используется в случае, если размещение Vitotrol 300A в типовом помещении или в ином месте, в котором происходят измерения температуры или настройки, невозможно

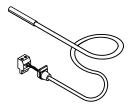
Размещение в типовом помещении на внутренней стене напротив радиаторов. Не устанавливать на полках, в нишах, а также в непосредственной близости от дверей или источников тепла (например, прямых солнечных лучей, камина, телевизора и т.п.) Датчик температуры помещения подключается к Vitotrol 300A. Подключение:

- 2-проводным кабелем с поперечным сечением медного провода 1,5 мм²
- Длина кабеля от устройства дистанционного управления макс. 30 м.
- Запрещается прокладка кабеля вместе с кабелями на 230/400

Технические данные

Класс защиты

Вид защиты IP 30 согласно EN 60529 обеспечить при монтаже Тип датчика Viessmann NTC, 10 kОм при 25 °C


Допустимая температура окружающей среды

в режиме эксплуатации от 0 до +40 °C - при хранении и транспортировке от -20 до +65 °C

Погружной датчик температуры

№ заказа 7438 702

Для измерения температуры в погружной гильзе.

Технические данные

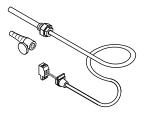
5,8 м, со штекером Длина кабеля IP 32 согласно EN 60529, Вид защиты обеспечить при монтаже Тип датчика Viessmann NTC 10 кОм, при 25 °C

Допустимая температура окружающей среды

от 0 до +90 °C - в режиме эксплуатации - при хранении и транспортировке от -20 до +70 °C

Датчик температуры уходящих газов

№ заказа 7452 531


Для опроса и контроля температуры уходящих газов, а также для индикации техобслуживания при превышении устанавливаемой температуры.

С резьбовым конусом.

Установка на дымоходе. Расстояние от задней кромки котла в направлении дымохода должно примерно в 1,5 раз превышать диаметр трубы дымохода.

- Для конденсационных котлов с LAS фирмы Viessmann: Необходимо дополнительно заказать трубу LAS с гнездом для датчика температуры уходящих газов.
- Конденсационный водогрейный котел с приобретаемым отдельно дымоходом:

Отверстие, необходимое для монтажа в дымоход, должно быть спроектировано и проверено изготовителем. Датчик температуры уходящих газов должен быть установлен в погружную гильзу из нержавеющей стали (приобретается отдельно).

Технические данные

Длина кабеля 3,5 м, со штекером Вид защиты IP 60 согласно EN 60529,

обеспечить при монтаже

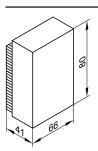
Тип датчика Viessmann NTC 20 кОм,

при 25 °C

Допустимая температура окружающей среды

- в режиме эксплуатации от 0 до +250 °C - при хранении и транспортировке от −20 до +70 °C

Приемник сигналов точного времени

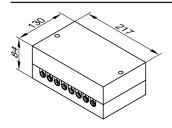

№ заказа 7450 563

Для приема сигнала точного времени от передатчика DCF 77 (местонахождение: г. Майнфлинген под Франкфуртом-на-Майне).

Точная установка даты и времени суток по радиосигналу. Приемник сигналов точного времени устанавливается на наружной стене в направлении передатчика. На качество приема могут отрицательным образом влиять металлосодержащие стройматериалы, например, железобетон, а также соседние здания и источники электромагнитных помех, например, высоковольтные кабели и контактные провода.

Подключение:

- 2-жильный кабель с максимальной длиной 35 м и поперечным сечением медного провода 1,5 мм²
- запрещается прокладка кабеля вместе с кабелями на 230/400 В



Внешний модуль расширения Н5

№ заказа 7199 249

Модуль расширения функциональных возможностей в корпусе. С штекером 150 для следующих функций:

- внешний запрос и блокировка теплогенерации ипи
- подключение заслонки газохода
- подключение дополнительных предохранительных устройств С кабелем длиной 2,0 м и штекерами "X12" и 41 для подключения к контроллеру.

Технические характеристики

 Номинальное напряжение
 230 В–

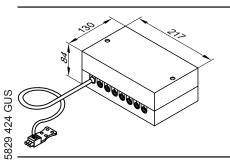
 Номинальная частота
 50 Гц

 Номинальный ток
 6 А

 Класс защиты
 I

Степень защиты IP 20 согласно EN 60529 обеспечить при монтаже

Допустимая температура окружаю-


щего воздуха

- в рабочем режиме - от 0 до +40 °C - при хранении и транспортировке - 0 + 0

Распределитель шины КМ

№ заказа 7415 028

Для подключения 2 - 9 приборов к шине KM контроллера Vitotronic.

Технические характеристики

Длина кабеля

Вид защиты

3,0 м, с штекером

IP 32 согласно EN 60529

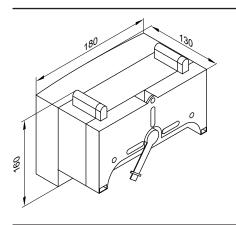
обеспечить при монтаже

Допустимая температура окружающего воздуха – при работе от 0 до +40 °C

- при хранении и транспортировке от −20 до +65 °C

Комплект привода смесителя, с блоком управленияя

№ заказа 7301 063


Абонент шины KM-BUS

Компоненты:

- блок управления приводом смесителя с электроприводом для смесителя фирмы Viessmann DN 20 - 50 и R 1/2 - 11/4
- датчик температуры подачи (накладной датчик температуры)
- штекер для подключения насоса отопительного контура
- сетевой кабель (длиной 3,0 м) с штекером
- кабель для соединения с шиной (длиной 3,0 м) с штекером

Электропривод смесителя монтируется непосредственно на смесителе фирмы Viessmann DN 20 - 50 и R 1/2 - 11/4.

Блок управления приводом смесителя с электроприводом смесителя

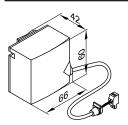
Технические данные

Номинальное напряжение 230 B~ Номинальная частота 50 Гц Номинальный ток 2 A Потребляемая мощность 5,5 BT

Вид защиты IP 32D согласно EN 60529 обеспечить при монтаже

Класс защиты

Допустимая температура окружаю-


щей среды

- в режиме эксплуатации от 0 до +40 °C – при хранении и транспортировке от -20 до +65 °C

Номинальная нагрузка релейного выхода для насоса отопительного

контура 20 2(1) A 230 B~ Крутящий момент 3 Нм Время работы для 90 $^{\circ}$ $^{\triangleleft}$ 120 c

Датчик температуры подачи (накладной)

Закрепляется стяжной лентой.

Технические данные

Длина кабеля 2,0 м, со штекером IP 32D согласно EN 60529 Вид защиты обеспечить при монтаже Тип датчика Viessmann NTC, 10 kОм при

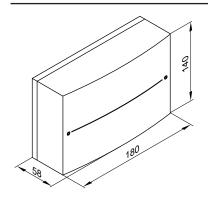
Допустимая температура окружаю-

щей среды

в режиме эксплуатации от 0 до +120 °C - при хранении и транспортировке от −20 до +70 °C

Блок управления приводом смесителя для отдельно приобретаемого привода смесителя

№ заказа 7301 062


Абонент шины KM-BUS

Для подключения отдельно приобретаемого привода смесителя.

Компоненты:

- электронный блок управления смесителем для подключения отдельного электропривода смесителя
- датчик температуры подачи (накладной датчик температуры)
- штекер для подключения насоса отопительного контура и электропривода смесителя
- сетевой кабель (длиной 3,0 м) с штекером
- кабель для соединения с шиной (длиной 3,0 м) с штекером

Блок управления приводом смесителя

Технические данные

230 B~ Номинальное напряжение Номинальная частота 50 Гц Номинальный ток 2 A Потребляемая мощность 1,5 Вт

Вид защиты IP 20D согласно EN 60529

Класс защиты

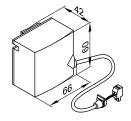
обеспечить при монтаже

Допустимая температура окружающей среды

- в режиме эксплуатации от 0 до +40 °C - при хранении и транспортировке от -20 до +65 °C

Номинальная нагрузочная способность релейных выходов

 насос отопительного контура
 20


 электропривод смесителя
 0,

Необходимое время работы электромотора смесителя для 90 ° <

2(1) A 230 B~ 0,1 A 230 B~

около 120 с

Датчик температуры подачи (накладной)

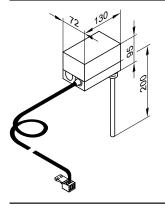
Закрепляется стяжной лентой.

Технические данные

Длина кабеля 5,8 м, со штекером
Вид защиты IP 32D согласно EN 60529
обеспечить при монтаже
Тип датчика Viessmann NTC, 10 кОм при

25 °C

Допустимая температура окружаю-


щей среды

- в режиме эксплуатации от 0 до +120 °C - при хранении и транспортировке от -20 до +70 °C

Погружной терморегулятор

№ заказа 7151 728

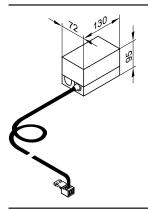
Используется в качестве термостатного ограничителя максимальной температуры для контура внутрипольного отопления. Термостатный ограничитель устанавливается в подающую магистраль отопительного контура и отключает насос отопительного контура при слишком высокой температуре подачи.

Технические характеристики

Длина кабеля

Диапазон настройки
Разность между темп. вкл. и выкл.
Коммутационная способность
Шкала настройки
Погружная гильза из высококачественной стали
Рег. № по DIN

4,2 м, со штекером 30 - 80 °C макс. 11 К 6(1,5) A 250 В~ в корпусе R ½ х 200 мм


DIN TR 116807 или DIN TR 96808

Накладной терморегулятор

№ заказа 7151 729

Используется в качестве термостатного ограничителя максимальной температуры для внутрипольного отопления (только в сочетании с металлическими трубами).

Термостатный ограничитель устанавливается на подающую магистраль отопительного контура и отключает насос отопительного контура при слишком высокой температуре подачи.

Длина кабеля 4,2 м, со штекером Диапазон настройки 30 - 80 °C

Разность между темп. вкл. и выкл. макс. 14 К Коммутационная способность Шкала настройки

в корпусе Рег. № по DIN **DIN TR 116807**

или

DIN TR 96808

6(1,5) A 250B~

Модуль управления гелиоустановкой, тип SM1

№ заказа 7429 073

Технические данные

Конструкция

Модуль управления гелиоустановкой содержит следующие ком-

- электронная система
- соединительные клеммы:
 - 4 датчика
 - насос контроллера гелиоустановки
 - шина KM-BUS
- подключение к сети (выполняется монтажной организацией)
- выход PWM для управления насосом контура гелиоустановки
- 1 реле для включения/выключения насоса или клапана

Датчик температуры коллектора

Для подключения в приборе.

Удлинение соединительного кабеля, обеспечиваемое заказчиком.

- 2-проводной кабель длиной макс. 60 м и поперечным сечением медного провода 1.5 мм²
- Запрещается прокладка кабеля вместе с кабелями на 230/400 В

Длина кабеля 2,5 м

Вид защиты IP 32 согласно EN 60529, обеспечить при монтаже

Тип датчика Viessmann NTC 20 кОм,

при 25 °C

Допустимая температура окружающей среды -20 - +200 °C в режиме эксплуатации - при хранении и транспортировке -20 - +70 °C

Датчик температуры емкостного водонагревателя

Для подключения в приборе.

Удлинение соединительного кабеля, обеспечиваемое заказчи-

- 2-проводной кабель с максимальной длиной 60 м и поперечным сечением медного провода 1,5 мм2
- Запрещается прокладка кабеля вместе с кабелями на 230/400

Длина кабеля 3,75 м

Вид защиты IP 32 согласно EN 60529, обеспечить при монтаже

Тип датчика Viessmann NTC 10 кОм,

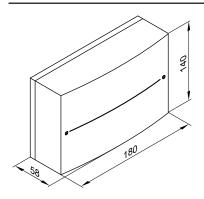
при 25 °C

Допустимая температура окружающей среды

от 0 до +90 °C – в режиме эксплуатации - при хранении и транспортировке -20 - +70 °C

В установках с емкостными водонагревателями Viessmann датчик температуры емкостного водонагревателя устанавливается в ввинчиваемом уголке (комплект поставки или принадлежности соответствующего емкостного водонагревателя) в обратной магистрали греющего контура.

Функции


- Включение/выключение насоса контура гелиоустановки
- Электронный ограничитель температуры в емкостном водонагревателе (защитное отключение при 90 °C)

- Защитное отключение коллекторов
- Регулирование поддержки отопления в сочетании с мультивалентной буферной емкостью отопительного контура
- Регулирование нагрева двух потребителей одной коллекторной панелью
- Включение/выключение дополнительного насоса или клапана через реле
- Вторая регулировка по разности температур или термостатная функция
- Регулировка частоты вращения насоса контура гелиоустановки с управлением волновыми пакетами или насоса контура гелиоустановки с входом PWM (пр-ва фирмы Grundfos)
- Подавление догрева емкостного водонагревателя водогрейным котлом (возможна дополнительная функция для приготовления горячей воды)
- Подавление догрева отопления помещений водогрейным котлом при поддержке отопления
- Ступень нагрева гелиоустановкой (при использовании емкостных нагревателей общим объемом ≥ 400 л)
- Расчет баланса энергии и диагностическая система

Для реализации перечисленных ниже функций требуется погружной датчик температуры, № заказа 7438 702:

- для переключения циркуляции в установках с 2 емкостными водонагревателями
- для переключения обратной магистрали между водогрейным котлом и буферной емкостью отопительного контура или
- для нагрева дополнительных потребителей

Технические характеристики

230 B~ Номинальное напряжение Номинальная частота Номинальный ток 2 A Потребляемая мощность Класс защиты

Принцип действия

Вид защиты

50 Гц 1.5 BT

IP 20 согласно EN 60529, обеспечить при монтаже тип 1B согласно EN 60730-1

Допустимая температура окружающей среды

в режиме эксплуатации

от 0 до +40 °C, использование в жилых помещениях и в котельных (при нормальных условиях окружающей

среды)

- при хранении и транспортировке от -20 до +65 °C

Номинальная нагрузочная способность релейных выходов

– полупроводниковое реле 1
 1 (1) A, 230 B∼
 – реле 2
 1 (1) A, 230 B∼
 – Итого
 макс. 2 A

Модуль расширения ЕА1

№ заказа 7452 091

Модуль расширения функциональных возможностей в корпусе для настенного монтажа.

Посредством входов и выходов могут быть реализованы следующие функции (максимум 5):

1 релейный выход (беспотенциальный переключающий контакт)

- Выход общего сигнала неисправности
- Управление магистральным насосом на тепловой пункт

1 аналоговый вход (от 0 до 10 В)

■ Установка заданной температуры котловой воды

3 цифровых входа

- Внешнее переключение режима работы для отопительных контуров 1 3 при использовании контроллера для погодозависимой теплогенерации
- Внешняя блокировка
- Внешняя блокировка с общим сигналом неисправности
- Запрос минимальной температуры котловой воды
- Сигналы неисправностей
- Кратковременный режим работы циркуляционного насоса контура водоразбора ГВС при использовании контроллера для погодозависимой теплогенерации

Технические данные

Номинальное напряжение 230 В~ Номинальная частота 50 Гц Номинальный ток 2 А Потребляемая мощность 4 Вт Номинальная нагрузочная способ- 2(1) A 250 В~

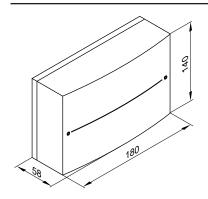
ность релейного выхода

Класс защиты

Вид защиты IP 20 D согласно EN 60529

обеспечить при монтаже

Допустимая температура окружаю-


шей среды

- в режиме эксплуатации от 0 до +40 °C

использование в жилых помещениях и в котельных (при нормальных окружаю-

щих условиях)

- при хранении и транспортировке от -20 до +65 °C

Vitocom 100, тип GSM

■ Без SIM-карты № заказа Z004594

Функции:

- Дистанционное переключение через сотовые телефонные сети GSM
- Дистанционные опросы через сотовые телефонные сети GSM
- Дистанционный контроль посредством SMS-сообщений на 1 или 2 сотовых телефона
- Дистанционный контроль других установок через цифровой вход (230 B)

Конфигурация:

GUS

5829 424

сотовые телефоны посредством SMS

Комплект поставки:

- Vitocom 100
- Сетевой кабель с евро-штекером (длиной 2,0 м)
- Антенна GSM (длиной 3,0 м), магнитная опора и клеевая панель
- Соединительный кабель шины KM-BUS (длина 3,0 м)

Условия, выполнение которых обеспечивает заказчик:

Хороший прием в сети выбранного оператора сотовой телефонной сети для связи GSM.

Общая длина всех соединительных кабелей шины KM-BUS макс. 50 м

Класс защиты Вид защиты

230 B ~ 50 Гц

15 MA 4 BT

Ш

IP 41 согласно EN 60529, обеспечить при монтаже

Принцип действия

Тип 1В согласно EN 60 730-1

от 0 до +55 °C

Допустимая температура окружаю-

щей среды

в режиме эксплуатации

использование в жилых помещениях и в котельных (при нормальных условиях

окружающей среды) от -20 до +85 °C

- при хранении и транспортировке

Подключения, выполняемые

заказчиком:

Вход сигнала неисправности DE 1 230 B~

Vitocom 200, тип GP1

№ заказа: см. в действующем прайс-листе

- Встроенный модем GPRS
- SIM-карта D2
- Для одной отопительной установки с одним или несколькими генераторами тепла, с подключенными отопительными контурами или без них.
- Для дистанционного контроля и дистанционного переключения отопительных установок через мобильную телефонную сеть.

В сочетании с Vitodata 100

- Для удаленного управления, дистанционного контроля и дистанционного опроса неисправностей и/или позиций опорных данных через Интернет
- Дистанционное переключение отопительных установок через Интернет

Конфигурация

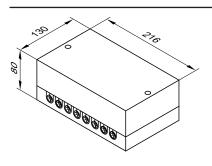
Конфигурирование Vitocom 200 производится через Vitodata 100. Страницы дисплея управления Vitodata 100 автоматически составляются при вводе в эксплуатацию.

Сигналы неисправностей

Сигналы неисправностей передаются на сконфигурированные устройства управления через следующие коммуникационные службы:

- SMS на мобильный телефон
- электронной почтой на ПК/ноутбук

Условия, выполнение которых обеспечивает заказчик:


- радиосигнал GPRS достаточной мощности для сотовой телефонной сети Мобильные Телесистемы в месте монтажа Vitocom 200
- телекоммуникационный модуль LON должен быть установлен в контроллере Vitotronic

Сведения об условиях эксплуатации и договора приведены в прайс-листе Viessmann и на сайте "www.viessmann.de/ vitocom-200-GP".

Комплект поставки:

- Сетевой кабель с сетевым штекером, длина 2 м
- Антенна с соединительным кабелем длиной 3 м, магнитной опорой и клеевой панелью
- SIM-карта
- Соединительный кабель LON RJ45 RJ45 длиной 7 м для обмена данными между Vitotronic и Vitocom 200

Объем поставки пакетов с Vitocom см. в прайс-листе.

Технические данные

Номинальное напряжение 230 B ~ Номинальная частота 50 Гц Номинальный ток 22 MA Потребляемая мощность 5 BA

Класс защиты II согласно EN 61140 IP 20 согласно EN 60529, Вид защиты обеспечить при монтаже Тип 1B согласно EN 60730-1

Принцип действия Допустимая температура окружаю-

щей среды

в режиме эксплуатации от 0 до +50 °C

использование в жилых помещениях и в котельных (при нормальных условиях окружающей среды)

 при хранении и транспортировке Подключения, выполняемые монтажной организацией:

– 2 цифровых входа DE 1 и DE 2

беспотенциальные кон-

от -20 до +85 °C

такты, 2-полюсные, 24 В-,

7 мА

- 1 цифровой выход DA1 беспотенциальный релей-

ный контакт, 3-пол., переключающий контакт, 230 В~/

30 В-, макс. 2 А

Прочие технические сведения и принадлежности приведены в инструкции по проектированию телекоммуникационных систем. Для расширенных функций возможна также работа с дисплеем управления Vitodata 300, см. инструкцию по проектированию информационного обмена.

Соединительный кабель LON для информационного обмена между контроллерами

№ заказа 7143 495

Длина кабеля 7 м, со штекерами.

Удлинение соединительного кабеля

- при прокладке на расстояние 7 14 м:
 - 2 соединительных кабеля (длина 7,0 м)

№ заказа 7143 495

1 муфта LON RJ45

№ заказа 7143 496

- При прокладке на расстояние 14 900 м с соединительными штекерами.
 - 2 соединительных штекера LON

№ заказа 7199 251

- 2-проводной кабель, САТ5, экранированный или JY(St) Y 2 x 2 x 0,8

предоставляется заказчиком

- При прокладке на расстояние 14 900 м с розетками:
- 2 соединительных кабеля (длина 7,0 м)

№ заказа 7143 495

- 2-проводной кабель, САТ5, экранированный или JY(St) Y 2 x 2 x 0,8

предоставляется заказчиком

- 2 соединительных штекера LON RJ45, CAT6

№ заказа 7171 784

Оконечное сопротивление (2 шт.)

№ заказа 7143 497

Для подключения шины LON к первому и последнему контроллеру.

Телекоммуникационный модуль LON

№ заказа 7172 173

(только для однокотловых установок)

Электронная плата для обмена данными с контроллерами отопительных контуров Vitotronic 200-H, Vitocom 300 и для привязки к системам сбора данных иерархически более высокого уровня.

Приложение

8.1 Предписания / инструкции

EnEV Положение об экономии энергии

1. BlmSchV Первое предписание по выполнению Федерального закона о защите от загрязнения окружающей

среды (положение о малых и средних отопительных установках)

FeuVo Положение об отоплении немецких федеральных земель

DIN 1988 Технические правила расчета и эксплуатации систем хозяйственно-питьевого водоснабжения DIN 4701-10 Энергетическая оценка отопительных и вентиляционных установок - отопление, приготовление

горячей воды, вентиляция

DIN 4726 Системы внутрипольного отопления и горячего водоснабжения, привязка радиаторов - пластмассо-

вые трубопроводы

DIN 4753 Водонагреватели и водогрейные установки для питьевой и технической воды

DIN 4795 Регуляторы тяги для дымовых труб; термины, требования к безопасности, испытания, маркировка

DIN 18160 Системы удаления продуктов сгорания

G DIN 18380 Отопительные системы и централизованные водогрейные установки (VOB) DIN 51603-1 Виды жидкого топлива - жидкое котельное топливо EL, минимальные требования 5829 DIN 57116

Электрооборудование отопительных установок

Приложение (продолжение)

EN 267 Автоматические горелки с вентилятором для жидких видов топлива

EN 304 Водогрейные котлы - правила контроля водогрейных котлов с распылительными горелками жидкого

топлива

EN 676 Автоматические горелки с вентилятором для газообразных видов топлива EN 12828 Отопительные системы в зданиях - проектирование систем водяного отопления

EN 12831 Отопительные установки в зданиях – методика расчета номинального теплопотребления
EN 13384 Системы удаления продуктов сгорания - теплотехнические и аэрогидродинамические расчеты
EN 15035 Водогрейные котлы - жидкотопливные котлы для режима работы с отбором воздуха для горения

извне

DVGW G 260 Технические правила для свойств газа

DVGW G 600 Технические правила для установки газовой аппаратуры (TRGI)

VDI 2035 Директивы по предотвращению ущерба вследствие коррозии и образования накипи в системах

водяного отопления

VdTÜV 1466 Памятка по требованиям к качеству воды

Требования VDE и особые предписания местных энергоснабжающих предприятий.

Предметный указатель

D Divicon	42
E ENEV	78, 80
V Vitoair	66
Vitocom	0.4
■ 100, тип GSM ■ 200, тип GP1	
Vitotrol	, 84, 85
■ UTA	
■ UTDB ■ UTDB-RF	
Vitotronic 100, тип КС1/КС3	
Б	
Блок предохранительных устройств	42
В	
Внутрипольное отопление	
Воздух для горения	56
г	
Газовая вентиляторная горелка	
Гидравлическая обвязка Гидродинамическое сопротивление	58
■ Vitola 200	16
Д	
Датчик наружной температуры	74
Датчик температуры	7.1
■ наружная температура■ Температура помещения	
Датчик температуры помещения	
Директивы	93
ж	
Жидкотопливная вентиляторная горелка	
Жидкотопливные горелки	63
К	
Качество воды в установке Коллектор отопительных контуров	
Комплект привода смесителя	42
■ отдельный электропривод смесителя	
■ электропривод смесителя	88
Контроллер постоянного действия ■ Блок управления	75, 76
М Модуль контроллера гелиоустановки	
■ технические характеристики	90
Модуль расширения ЕА1	91
Модуль управления гелиоустановкой ■ Технические данные	90
Н Накладной терморегулятор	89
Настройка горелки	
Нормы	

О Отопительные контуры	.58
п	
Панель управления77,	79
Пластиковые трубы в отопительном контуре	
Погружной терморегулятор	
Подключения в контуре ГВС	
■ Vitola 222	.63
Помещение для установки	.56
Предохранительный клапан	
Проникновение влаги через стенки трубы дымохода, предотвр	
щение	.70
Р	
Распределитель шины KM	27
Расчет параметров установки	
Расширение смесителя	
■ отдельный электропривод смесителя	22
электропривод смесителя	
Расширительный бак	
Регулятор тяги, назначение	
Регулятор тяги Vitoair	
Режим эксплуатации с отбором воздуха для горения извне	
ССистема удаления продуктов сгоранияСнабжение жидким топливом■ однотрубная система	
т	
Таймер78,	80
Температура уходящих газов, регулировка	.66
Терморегулятор	
■ Накладная температура	.89
■ Погружная температура	.89
Терморегулятор для помещений82, 83,	
Термостат для помещений83,	84
Технические данные	
■ Модуль управления гелиоустановкой	.90
Технические характеристики	
■ Vitola 200, тип VB2A	
■ Vitorond 100	
■ Vitorond 100, тип VR2B	
■ модуль контроллера гелиоустановки Танализа	
Топливо	.oc
Тяга трубы дымохода ■ без регулятора тяги	ec
■ поддержание	
■ с регулятором тяги	./(
у	
Условия монтажа	EG
	.oc
УстановкаУстройство контроля заполненности котлового блока водой	.56

95

Оставляем за собой право на технические изменения.

ТОВ "Віссманн" вул. Димитрова, 5 корп. 10-А 03680, м.Київ, Україна тел. +38 044 4619841 факс. +38 044 4619843

Viessmann Group ООО "Виссманн" г. Москва тел. +7 (495) 663 21 11 факс. +7 (495) 663 21 12 www.viessmann.ru